精英家教网 > 高中数学 > 题目详情

【题目】已知某路段最高限速60km/h,电子监控测得连续6辆汽车的速度用茎叶图表示如下(单位:km/h).若从中任取2辆,则恰好有1辆汽车超速的概率为(

A.
B.
C.
D.

【答案】C
【解析】解:不同车速有6辆,从中任取2辆,共有C62=15.则恰好有1辆汽车超速的数目:2×4=8.
从中任取2辆,则恰好有1辆汽车超速的概率为:
P=
故选:C.
【考点精析】关于本题考查的茎叶图,需要了解茎叶图又称“枝叶图”,它的思路是将数组中的数按位数进行比较,将数的大小基本不变或变化不大的位作为一个主干(茎),将变化大的位的数作为分枝(叶),列在主干的后面,这样就可以清楚地看到每个主干后面的几个数,每个数具体是多少才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知0<x< ,sinx﹣cosx= ,存在a,b,c(a,b,c∈N*),使得(a﹣πb)tan2x﹣ctanx+(a﹣πb)=0,则2a+3b+c=(
A.50
B.70
C.110
D.120

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)求的单调区间;

(Ⅱ)求在区间上的最小值.

【答案】(Ⅰ);(Ⅱ).

【解析】(Ⅰ).

,得.

的情况如上:

所以,的单调递减区间是,单调递增区间是.

(Ⅱ)当,即时,函数上单调递增,

所以在区间上的最小值为.

,即时,

由(Ⅰ)知上单调递减,在上单调递增,

所以在区间上的最小值为.

,即时,函数上单调递减,

所以在区间上的最小值为.

综上,当时,的最小值为

时,的最小值为

时,的最小值为.

型】解答
束】
19

【题目】已知抛物线的顶点在原点,焦点在坐标轴上,点为抛物线上一点.

1)求的方程;

2)若点上,过的两弦,若,求证: 直线过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的三棱锥ABC﹣A1B1C1中,AA1⊥底面ABC,D,E分别是BC,A1B1的中点.

(1)求证:DE∥平面ACC1A1
(2)若AB⊥BC,AB=BC,∠ACB1=60°,求直线BC与平面AB1C所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=sinx﹣cosx,x∈[0,+∞).
(1)证明:
(2)证明:当a≥1时,f(x)≤eax﹣2.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在R上的可导函数f(x)满足f′(x)+f(x)<0,设a=f(m﹣m2),b=e f(1),则a,b的大小关系是(
A.a>b
B.a<b
C.a=b
D.a,b的大小与m的值有关

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数),其图像与直线相邻两个交点的距离为,若对于任意的恒成立, 则的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=3x+2xf′(1),则曲线f(x)在x=0处的切线在x轴上的截距为(
A.1
B.5ln3
C.﹣5ln3
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法:

①将一组数据中的每一个数据都加上或减去同一个常数后,方差不变;

②设有一个线性回归方程,变量x增加1个单位时,y平均增加5个单位;

③设具有相关关系的两个变量x,y的相关系数为r,则|r|越接近于0,x和y之间的线性相关程度越强;

④在一个2×2列联表中,由计算得K2的值,则K2的值越大,判断两个变量间有关联的把握就越大.

以上错误结论的个数为(  )

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

同步练习册答案