精英家教网 > 高中数学 > 题目详情

【题目】五个人站成一排,求在下列条件下的不同排法种数:
(1)甲必须在排头;
(2)甲、乙相邻;
(3)甲不在排头,并且乙不在排尾;
(4)其中甲、乙两人自左向右从高到矮排列且互不相邻

【答案】
(1)

【解答】解:特殊元素是甲,特殊位置是排头;首先排“排头”不动,再排其它4个位置有种,所以共有:


(2)

【解答】解:把甲、乙看成一个人来排有 种,而甲、乙也存在顺序变化,所以甲、乙相邻排法种数为


(3)

【解答】解:甲不在排头,并且乙不在排尾排法种数为:


(4)

【解答】解:先将其余3个全排列,再将甲、乙插入4个空位,所以,一共有种不同排法


【解析】本题主要考查了,解决问题的关键是(1)特殊元素(位置)法:首先排“排头”不动,再排其它4个位置有 种共有24种;(2)捆绑法:把甲、乙看成一个人来排有 种,而甲、乙也存在顺序变化,所以甲、乙相邻排法种数为 种;(3)对立法:甲在排头和乙在排尾的各 种,其中甲在排头且乙在排尾的有种,五个人站成一排的不同排法数是种,所以甲不在排头,并且乙不在排尾的有 种;(4)插空法:先将其余3个全排列 种,再将甲、乙插入4个空位 种, 所以,一共有 种不同排法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若二次函数 的图象和直线y=x无交点,现有下列结论:
①方程f[f(x)]=x一定没有实数根;
②若a>0,则不等式f[f(x)]>x对一切实数x都成立;
③若a<0,则必存存在实数x0 , 使f[f(x0)]>x0
④若a+b+c=0,则不等式f[f(x)]<x对一切实数都成立;
⑤函数 的图象与直线y=﹣x也一定没有交点.
其中正确的结论是(写出所有正确结论的编号).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知椭圆C: (a>b>0)的离心率为,椭圆C截直线y=1所得线段的长度为.

(Ⅰ)求椭圆C的方程;

(Ⅱ)动直线l:y=kx+m(m≠0)交椭圆CA,B两点,交y轴于点M.点NM关于O的对称点,⊙N的半径为|NO|. 设DAB的中点,DE,DF与⊙N分别相切于点E,F,求EDF的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}中,a1=3,an+1=can+m(c,m为常数)
(1)当c=1,m=1时,求数列{an}的通项公式an
(2)当c=2,m=﹣1时,证明:数列{an﹣1}为等比数列;
(3)在(2)的条件下,记bn= ,Sn=b1+b2+…+bn , 证明:Sn<1.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息.若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为 ( )
A.10
B.11
C.12
D.15

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某保险公司利用简单随机抽样方法,对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如下:

赔付金额()

0

1 000

2 000

3 000

4 000

车辆数()

500

130

100

150

120

(1)若每辆车的投保金额均为2800,估计赔付金额大于投保金额的概率.

(2)在样本车辆中,车主是新司机的占10%,在赔付金额为4000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4000元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直棱柱ABC﹣A1B1C1中,D,E分别是AB,BB1的中点,AA1=AC=CB= AB. (Ⅰ)证明:BC1∥平面A1CD;
(Ⅱ)求二面角D﹣A1C﹣E的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设a>0,f(x)= + 是R上的偶函数.
(1)求a的值;
(2)证明f(x)在(0,+∞)上为增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,若 且f(x)在区间 上有最小值,无最大值,则ω的值为(
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案