精英家教网 > 高中数学 > 题目详情

【题目】已知函数
(1)求函数f(x)的单调区间;
(2)设a>0,求函数f(x)在[2a,4a]上的最小值;
(3)某同学发现:总存在正实数a、b(a<b),使ab=ba , 试问:他的判断是否正确?若不正确,请说明理由;若正确,请直接写出a的取值范围(不需要解答过程).

【答案】
(1)解:定义域为(0,+∞),

,则x=e,

当x变化时,f'(x),f(x)的变化情况如下表:

x

(0,e)

e

(e,+∞)

f'(x)

+

0

f(x)

∴f(x)的单调增区间为(0,e);单调减区间为(e,+∞)


(2)解:由(1)知f(x)在(0,e)上单调递增,在(e,+∞)上单调递减,所以,

当4a≤e时,即 时,f(x)在[2a,4a]上单调递增,∴f(x)min=f(2a);

当2a≥e时,f(x)在[2a,4a]上单调递减,∴f(x)min=f(4a)

当2a<e<4a时,即 时,f(x)在[2a,e]上单调递增,f(x)在[e,4a]上单调递减,

∴f(x)min=min{f(2a),f(4a)}.

下面比较f(2a),f(4a)的大小,

∴若 ,则f(a)﹣f(2a)≤0,此时

,则f(a)﹣f(2a)>0,此时

综上得:

当0<a≤1时,

当a>1时,


(3)解:正确,a的取值范围是1<a<e

理由如下,考虑几何意义,即斜率,当x→+∞时,f(x)→0

又∵f(x)在(0,e)上单调递增,在(e,+∞)上单调递减

∴f(x)的大致图象如右图所示

∴总存在正实数a,b且1<a<e<b,使得f(a)=f(b),即 ,即ab=ba


【解析】(1)先确定函数的定义域,再利用导数,可求函数f(x)的单调区间;(2)根据f(x)在(0,e)上单调递增,在(e,+∞)上单调递减,结合函数的定义域,分类讨论,可求函数f(x)在[2a,4a]上的最小值;(3)a的取值范围是1<a<e,利用f(x)在(0,e)上单调递增,在(e,+∞)上单调递减,即可求得.
【考点精析】关于本题考查的利用导数研究函数的单调性和函数的最大(小)值与导数,需要了解一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减;求函数上的最大值与最小值的步骤:(1)求函数内的极值;(2)将函数的各极值与端点处的函数值比较,其中最大的是一个最大值,最小的是最小值才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知f(x)= (ax﹣ax)(a>0且a≠1).
(1)判断f(x)的奇偶性.
(2)讨论f(x)的单调性.
(3)当x∈[﹣1,1]时,f(x)≥b恒成立,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ln
(1)求函数f(x)的定义域,并判断函数f(x)的奇偶性;
(2)对于x∈[2,6],f(x)>ln 恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn , 通项公式为 . (Ⅰ)计算f(1),f(2),f(3)的值;
(Ⅱ)比较f(n)与1的大小,并用数学归纳法证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

已知数列{an}的各项均为正数,记数列{an}的前n项和为Sn,数列{an2}的前n项和为Tn,且3TnSn2+2Snn∈N*

(Ⅰ)求a1的值

(Ⅱ)求数列{an}的通项公式

(Ⅲ)若kt∈N*,且S1SkS1StSk成等比数列,求kt的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

已知函数f(x)=2x3-3(a+1)x2+6axa∈R.

(Ⅰ)曲线yf(x)x=0处的切线的斜率为3,a的值;

(Ⅱ)若对于任意x∈(0,+∞)f(x)+f(-x)≥12lnx恒成立,求a的取值范围;

(Ⅲ)若a>1,设函数f(x)在区间[1,2]上的最大值、最小值分别为M(a)、m(a),

h(a)=M(a)-m(a),h(a)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】继共享单车之后,又一种新型的出行方式------“共享汽车”也开始亮相北上广深等十余大中城市,一款叫“一度用车”的共享汽车在广州提供的车型是“奇瑞eQ”,每次租车收费按行驶里程加用车时间,标准是“1元/公里+0.1元/分钟”,李先生家离上班地点10公里,每天租用共享汽车上下班,由于堵车因素,每次路上开车花费的时间是一个随机变量,根据一段时间统计40次路上开车花费时间在各时间段内的情况如下:

时间(分钟)

次数

8

14

8

8

2

以各时间段发生的频率视为概率,假设每次路上开车花费的时间视为用车时间,范围为分钟.

(Ⅰ)若李先生上.下班时租用一次共享汽车路上开车不超过45分钟,便是所有可选择的交通工具中的一次最优选择,设是4次使用共享汽车中最优选择的次数,求的分布列和期望.

(Ⅱ)若李先生每天上下班使用共享汽车2次,一个月(以20天计算)平均用车费用大约是多少(同一时段,用该区间的中点值作代表).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2+ax﹣lnx,a∈R
(1)若函数f(x)在[1,2]上是减函数,求实数a的取值范围
(2)令g(x)=f(x)﹣x2 , 是否存在实数a,当x∈(0,e]时,函数g(x)的最小值是3?若存在,求出a的值,若不存在,说明理由
(3)当x∈(0,e]时,求证:e2x2 x>(x+1)lnx.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,侧面为等边三角形且垂直于底面

.

(1)证明:

(2)若直线与平面所成角为,求二面角的余弦值.

查看答案和解析>>

同步练习册答案