精英家教网 > 高中数学 > 题目详情
精英家教网如图,平面PAC⊥平面ABC,△ABC是以AC为斜边的等腰直角三角形,E、F、O分别为PA,PB,AC的中点,AC=16,PA=PC=10.
(I)设G是OC的中点,证明:FG∥平面BOE;
(II)证明:在△ABO内存在一点M,使FM⊥平面BOE.
分析:(I)连接OP,以O为坐标原点,分别以OB、OC、OP所在直线为x轴,y轴,z轴,建立空间直角坐标系O-xyz,分别求了各点对应的坐标,求出直线FG的方向向量和平面BOE的法向量,判断两个向量的关系,即可得到FG∥平面BOE;
(II)设点M的坐标为(x0,y0,0),则我们易求出直线FM的方向向量,由FM⊥平面BOE求出满足条件的M点的坐标,并与△ABO内部表示的平面区域对应的约束条件进行比照,即可得到答案.
解答:证明:(I)连接OP,以O为坐标原点,分别以OB、OC、OP所在直线为x轴,y轴,z轴,建立空间直角坐标系O-xyz,
则O(0,0,0),A(0,-8,0),B(8,0,0),C(0,8,0),P(0,0,6),E(0,-4,3),F(4,0,3),…(2分)
由题意得,G(0,4,0)因
OB
=(8,0,0)
OE
=(0,-4,3)

因此平面BOE的法向量为
n
=(0,3,4)
,…(4分)
FG
=(-4,4,-3)
n
FG
=0

又直线FG不在平面BOE内,因此有FG∥平面BOE …(6分)
(II)设点M的坐标为(x0,y0,0),则
FM
=(x0-4,y0,-3)
,…(8分)
因为FM⊥平面BOE,所以有
FM
n
,因此有x0=4,y0=-
9
4

即点M的坐标为 (4,-
9
4
,0)
,…(11分)
在平面直角坐标系xoy中,
△AOB的内部区域满足不等式组
x>0
y<0
x-y<8

经检验,点M的坐标满足上述不等式组,所以在△AOB内存在一点M,使FM⊥平面BOE.…(13分)
点评:本题考查的知识点是直线与平面平行的判定,直线与平面垂直的判定,其中建立适当的坐标系,将线面平行及线面垂直问题,转化为向量夹角问题是解答本题的关键.本题综合较强,难度较大.
练习册系列答案
相关习题

科目:高中数学 来源:2010年江苏省高二下学期期中考试数学(理) 题型:解答题

(16分)如图,四棱锥S-ABCD 的底面是正方形,每条侧棱的长都是地面边长的倍,

P为侧棱SD上的点。

(Ⅰ)求证:ACSD;       

(Ⅱ)若SD平面PAC,求二面角P-AC-D的大小

(Ⅲ)在(Ⅱ)的条件下,侧棱SC上是否存在一点E, 使得BE∥平

面PAC。若存在,求SE:EC的值;若不存在,试说明理由。

 

 

查看答案和解析>>

科目:高中数学 来源:江苏省启东中学09-10学年高二下学期期中考试(理) 题型:解答题

 如图,四棱锥S-ABCD 的底面是正方形,每条侧棱的长都是地面边长的倍,

P为侧棱SD上的点。(Ⅰ)求证:ACSD;       

(Ⅱ)若SD平面PAC,求二面角P-AC-D的大小

(Ⅲ)在(Ⅱ)的条件下,侧棱SC上是否存在一点E,        使得BE∥平

面PAC。若存在,求SE:EC的值;若不存在,试说明理由。

 

                                    

 

 

 

 

 

 

 

查看答案和解析>>

同步练习册答案