精英家教网 > 高中数学 > 题目详情
已知双曲线的左右焦点分别为为双曲线的离心率,P是双曲线右支上的点,的内切圆的圆心为I,过作直线PI的垂线,垂足为B,则OB=
A.aB.bC.D.
A

试题分析:根据题意,利用切线长定理,再利用双曲线的定义,把,转化为,从而求得点H的横坐标.再在三角形PCF2中,由题意得,它是一个等腰三角形,从而在三角形中,利用中位线定理得出OB,从而解决问题.
解:由题意知:(-c,0)、(c,0),内切圆与x轴的切点是点A,作图

,及圆的切线长定理知,
,设内切圆的圆心横坐标为x,
则|(x+c)-(x-c)|=2a,∴x=a,在三角形中,由题意得,它是一个等腰三角形,PC=PF2
∴在三角形中,有:OB= =-PC)=-)=×2a=a.故选A.
点评:本题考查双曲线的定义、切线长定理.解答的关键是充分利用三角形内心的性质.属于基础题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

斜率为的直线与双曲线(a>0,b>0)恒有两个公共点,则双曲线离心率的取值范围是
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

到两互相垂直的异面直线的距离相等的点,在过其中一条直线且平行于另一条直线的平面内的轨迹是(   )。
A.直线B.椭圆C.抛物线D.双曲线

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

双曲线的虚轴长是实轴长的2倍,则(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,用与底面成角的平面截圆柱得一椭圆截线,则该椭圆的离心率为 (    )
A.B.C.D.非上述结论

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,已知抛物线的焦点为.过点的直线交抛物线于两点,直线分别与抛物线交于点

(Ⅰ)求的值;
(Ⅱ)记直线的斜率为,直线的斜率为.证明:为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆,过椭圆右焦点F的直线L交椭圆于A、B两点,交y轴于P点。设,则等于(   )
A.         B.         C.          D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

抛物线的焦点为F,倾斜角为的直线过点F且与抛物线的一个交点为A,,则抛物线的方程为
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知椭圆的中心在坐标原点、对称轴为坐标轴,且抛物线的焦点是它的一个焦点,又点在该椭圆上.
(1)求椭圆的方程;
(2)若斜率为直线与椭圆交于不同的两点,当面积的最大值时,求直线的方程.

查看答案和解析>>

同步练习册答案