精英家教网 > 高中数学 > 题目详情
2.设α是第三象限,cos(α+β)cosβ+sin(α+β)sinβ=-$\frac{3}{5}$,则tan$\frac{α}{2}$=(  )
A.-3B.-2C.2D.3

分析 由条件利用两角差的余弦公式求得cosα=-$\frac{3}{5}$,可得sinα的值,再利用半角公式求得tan$\frac{α}{2}$的值.

解答 解:α是第三象限,cos(α+β)cosβ+sin(α+β)sinβ=cos[(α+β)-β]=cosα=-$\frac{3}{5}$,
∴sinα=-$\sqrt{{1-cos}^{2}α}$=-$\frac{4}{5}$,
则tan$\frac{α}{2}$=$\frac{1-cosα}{sinα}$=$\frac{1+\frac{3}{5}}{-\frac{4}{5}}$=-2,
故选:B.

点评 本题主要考查两角和差的余弦公式、同角三角函数的基本关系、半角公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.过P(1,2)的l与⊙C:(x-2)2+(y-1)2=9相交于A,B,S△ABC的最大值为$\sqrt{14}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.写出下列集合中的元素:
(1){小于12的质数};
(2){倒数等于其本身的数};
(3){平方数等于其本身的数}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知方程$\frac{{x}^{2}}{1+k}$+$\frac{{y}^{2}}{1-k}$=1(k<-1)表示双曲线,则双曲线的焦点坐标是(  )
A.(0,$±\sqrt{k}$)B.(0,$±\sqrt{2k}$)C.(0,$±\sqrt{-k}$)D.(0,$±\sqrt{-2k}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设-$\frac{π}{4}$<a<0,则方程$\frac{{x}^{2}}{cosa}+\frac{{y}^{2}}{sina}$=1表示的曲线为(  )
A.焦点在X轴上的椭圆B.焦点在Y轴上的椭圆
C.焦点在X轴上的双曲线D.焦点在Y轴上的双曲线

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知M是焦点为F1(-1,0),F2(1,0)椭圆上任-点.且三角形F1MF2的面积的最大值$\sqrt{3}$.
(1)求椭圆C的标准方程;
(2)一直线l过F2且与椭圆C交于A、B两点,交y轴于点P,证明:$\frac{|PB|}{|B{F}_{2}|}$-$\frac{|PA|}{|A{F}_{2}|}$为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知:f(x)=$\left\{\begin{array}{l}{sinπx,x<0}\\{f(x-1)+1,x≥0}\end{array}\right.$g(x)=$\left\{\begin{array}{l}{cosπx,x<\frac{1}{2}}\\{g(x-1)-1,x≥\frac{1}{2}}\end{array}\right.$
求证:g($\frac{1}{4}$)+f($\frac{1}{3}$)+g($\frac{5}{6}$)+f($\frac{3}{4}$)=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.求下列函数的值域.
①f(x)=($\frac{1}{3}$)${\;}^{{x}^{2}+3x-\frac{1}{4}}$;
②f(x)=$\sqrt{1-(\frac{1}{2})^{x}}$;
③f(x)=4x-3•2x+1,x∈[-1,4].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知圆C:x2+y2=1与x轴的两个交点分别为A,B(由左到右),P为C上的动点,l过点P且与C相切,过点A作l的垂线且与直线BP交于点M,则点M到直线x+2y-9=0的距离的最大值是$2\sqrt{5}+2$.

查看答案和解析>>

同步练习册答案