精英家教网 > 高中数学 > 题目详情

【题目】在平行四边形ABCD中,AC与BD交于点O,E是线段OD的中点,AE的延长线与CD相交于点F.若AB=2, ,∠BAD=45°,则 =( )

A.
B.1
C.﹣
D.1

【答案】C
【解析】解:平行四边形ABCD,AB=2, ,∠BAD=45°,DF∥AB,

可得△DEF∽△BEA,

E是线段OD的中点,

可得DF:BA═DE:BE=EF:AE=1:3,

= = × + )= + +

= + );

= = ),

= + )(

= 2 2 )= ×( ×2﹣ ×4﹣2 ×

=﹣

所以答案是:C.

【考点精析】本题主要考查了向量的三角形法则的相关知识点,需要掌握三角形加法法则的特点:首尾相连;三角形减法法则的特点:共起点,连终点,方向指向被减向量才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆 的离心率为 ,短轴长为2. (Ⅰ)求椭圆C的标准方程;
(Ⅱ)若圆O:x2+y2=1的切线l与曲线E相交于A、B两点,线段AB的中点为M,求|OM|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大学为调研学生在A,B两家餐厅用餐的满意度,从在A,B两家餐厅都用过餐的学生中随机抽取了100人,每人分别对这两家餐厅进行评分,满分均为60分.整理评分数据,将分数以10为组距分成6组:[0,10),[10,20),[20,30),[30,40),[40,50),[50,60],得到A餐厅分数的频率分布直方图,和B餐厅分数的频数分布表:

B餐厅分数频数分布表

分数区间

频数

[0,10)

2

[10,20)

3

[20,30)

5

[30,40)

15

[40,50)

40

[50,60]

35

定义学生对餐厅评价的“满意度指数”如下:

分数

[0,30)

[30,50)

[50,60]

满意度指数

0

1

2


(Ⅰ)在抽样的100人中,求对A餐厅评价“满意度指数”为0的人数;
(Ⅱ)从该校在A,B两家餐厅都用过餐的学生中随机抽取1人进行调查,试估计其对A餐厅评价的“满意度指数”比对B餐厅评价的“满意度指数”高的概率;
(Ⅲ)如果从A,B两家餐厅中选择一家用餐,你会选择哪一家?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)= +c(e=2.71828…是自然对数的底数,c∈R).
(Ⅰ)求f(x)的单调区间、最大值;
(Ⅱ)讨论关于x的方程|lnx|=f(x)根的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=alnx+ (a∈R).
(1)若f(x)在x=2处取得极小值,求a的值;
(2)若f(x)存在单调递减区间,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,A、B是海面上两个固定观测站,现位于B点南偏东45°且相距 海里的D处有一艘轮船发出求救信号.此时在A处观测到D位于其北偏东30°处,位于A北偏西30°且与A相距 海里的C点的救援船立即前往营救,其航行速度为30海里/小时,该救援船到达D点需要多长时间?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=Asin(ωx+φ) (A>0,ω>0,0<φ<π),其导函数f′(x)的部分图象如图所示,则函数f(x)的解析式为( )

A.f(x)=4sin( x+ π)
B.f(x)=4sin( x+
C.f(x)=4sin( x+
D.f(x)=4sin( x+

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆G: 的两个焦点分别为F1和F2 , 短轴的两个端点分别为B1和B2 , 点P在椭圆G上,且满足|PB1|+|PB2|=|PF1|+|PF2|.当b变化时,给出下列三个命题: ①点P的轨迹关于y轴对称;
②存在b使得椭圆G上满足条件的点P仅有两个;
③|OP|的最小值为2,
其中,所有正确命题的序号是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .
(1)若 ,求函数 的极值;
(2)设函数 ,求函数 的单调区间;
(3)若在区间 上不存在 ,使得 成立,求实数 的取值范围.

查看答案和解析>>

同步练习册答案