【题目】在平行四边形ABCD中,AC与BD交于点O,E是线段OD的中点,AE的延长线与CD相交于点F.若AB=2, ,∠BAD=45°,则 =( )
A.
B.1
C.﹣
D.1
科目:高中数学 来源: 题型:
【题目】已知椭圆 的离心率为 ,短轴长为2. (Ⅰ)求椭圆C的标准方程;
(Ⅱ)若圆O:x2+y2=1的切线l与曲线E相交于A、B两点,线段AB的中点为M,求|OM|的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某大学为调研学生在A,B两家餐厅用餐的满意度,从在A,B两家餐厅都用过餐的学生中随机抽取了100人,每人分别对这两家餐厅进行评分,满分均为60分.整理评分数据,将分数以10为组距分成6组:[0,10),[10,20),[20,30),[30,40),[40,50),[50,60],得到A餐厅分数的频率分布直方图,和B餐厅分数的频数分布表:
B餐厅分数频数分布表 | |
分数区间 | 频数 |
[0,10) | 2 |
[10,20) | 3 |
[20,30) | 5 |
[30,40) | 15 |
[40,50) | 40 |
[50,60] | 35 |
定义学生对餐厅评价的“满意度指数”如下:
分数 | [0,30) | [30,50) | [50,60] |
满意度指数 | 0 | 1 | 2 |
(Ⅰ)在抽样的100人中,求对A餐厅评价“满意度指数”为0的人数;
(Ⅱ)从该校在A,B两家餐厅都用过餐的学生中随机抽取1人进行调查,试估计其对A餐厅评价的“满意度指数”比对B餐厅评价的“满意度指数”高的概率;
(Ⅲ)如果从A,B两家餐厅中选择一家用餐,你会选择哪一家?说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)= +c(e=2.71828…是自然对数的底数,c∈R).
(Ⅰ)求f(x)的单调区间、最大值;
(Ⅱ)讨论关于x的方程|lnx|=f(x)根的个数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=alnx+ (a∈R).
(1)若f(x)在x=2处取得极小值,求a的值;
(2)若f(x)存在单调递减区间,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,A、B是海面上两个固定观测站,现位于B点南偏东45°且相距 海里的D处有一艘轮船发出求救信号.此时在A处观测到D位于其北偏东30°处,位于A北偏西30°且与A相距 海里的C点的救援船立即前往营救,其航行速度为30海里/小时,该救援船到达D点需要多长时间?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=Asin(ωx+φ) (A>0,ω>0,0<φ<π),其导函数f′(x)的部分图象如图所示,则函数f(x)的解析式为( )
A.f(x)=4sin( x+ π)
B.f(x)=4sin( x+ )
C.f(x)=4sin( x+ )
D.f(x)=4sin( x+ )
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆G: 的两个焦点分别为F1和F2 , 短轴的两个端点分别为B1和B2 , 点P在椭圆G上,且满足|PB1|+|PB2|=|PF1|+|PF2|.当b变化时,给出下列三个命题: ①点P的轨迹关于y轴对称;
②存在b使得椭圆G上满足条件的点P仅有两个;
③|OP|的最小值为2,
其中,所有正确命题的序号是 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com