精英家教网 > 高中数学 > 题目详情

【题目】抽样统计甲、乙两名学生的5次训练成绩(单位:分),结果如下:

学生

第1次

第2次

第3次

第4次

第5次

65

80

70

85

75

80

70

75

80

70

则成绩较为稳定(方差较小)的那位学生成绩的方差为

【答案】20
【解析】解:根据题意,对于甲,其平均数 = =75,其方差S2= [(65﹣75)2+(80﹣75)2+(70﹣75)2+(85﹣75)2+(75﹣75)2]=50; 对于乙,其平均数 = =75,其方差S2= [(80﹣75)2+(70﹣75)2+(75﹣75)2+(80﹣75)2+(70﹣75)2]=20;
比较可得:S2>S2 , 则乙的成绩较为稳定;
所以答案是:20.
【考点精析】解答此题的关键在于理解极差、方差与标准差的相关知识,掌握标准差和方差越大,数据的离散程度越大;标准差和方程为0时,样本各数据全相等,数据没有离散性;方差与原始数据单位不同,解决实际问题时,多采用标准差.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在如图所示的几何体中,四边形是边长为2的菱形,平面

1)证明:平面平面

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:

则下面结论中不正确的是

A. 新农村建设后,种植收入减少

B. 新农村建设后,其他收入增加了一倍以上

C. 新农村建设后,养殖收入增加了一倍

D. 新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为自然对数的底数,).

(1)判断曲线在点处的切线与曲线的公共点个数;

(2)当时,若函数有两个零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线C1 (参数θ∈R),以坐标原点O为极点,x轴的非负半轴为极轴,建立极坐标系,曲线C2的极坐标方程为 ,点Q的极坐标为
(1)将曲线C2的极坐标方程化为直角坐标方程,并求出点Q的直角坐标;
(2)设P为曲线C1上的点,求PQ中点M到曲线C2上的点的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】学校将从4名男生和4名女生中选出4人分别担任辩论赛中的一、二、三、四辩手,其中男生甲不适合担任一辩手,女生乙不适合担任四辩手.现要求:如果男生甲入选,则女生乙必须入选.那么不同的组队形式有_________种.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某家电专卖店试销A、B、C三种新型空调,连续五周销售情况如表所示:

第一周 第二周 第三周 第四周 第五周

A型数量/台 12 8 15 22 18

B型数量/台 7 12 10 10 12

C型数量/台

(I)求A型空调平均每周的销售数量;

(Ⅱ)为跟踪调查空调的使用情况,从该家电专卖店第二周售出的A、B型空调销售记录中,随机抽取一台,求抽到B型空调的概率;

(III)已知C型空调连续五周销量的平均数为7,方差为4,且每周销售数量互不相同,求C型空调这五周中的最大销售数量。(只需写出结论)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sin(2ωx﹣ )(ω>0)的最小正周期为4π,则(
A.函数f(x)的图象关于点( ,0)对称
B.函数f(x)的图象关于直线x= 对称
C.函数f(x)的图象在( ,π)上单调递减
D.函数f(x)的图象在( ,π)上单调递增

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数y=sinx的图象向右平移 个单位,再将所得函数图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到函数y=sin(ωx+φ),(ω>0,|φ|< )的图象,则(
A.ω=2,φ=﹣
B.ω=2,φ=﹣
C.ω= ,φ=﹣
D.ω= ,φ=﹣

查看答案和解析>>

同步练习册答案