精英家教网 > 高中数学 > 题目详情

已知函数
(1)若函数在区间上存在极值点,求实数的取值范围;
(2)当时,不等式恒成立,求实数的取值范围;
(3)求证:.(为自然对数的底数)

(1) 实数的取值范围为;(2)的取值范围为;(3) 见解析.

解析试题分析:(1)先利用导数求出函数在处取得唯一的极值,因为函数在区间存在极值点,故;(2)根据条件可得,然后令,求出的最小值,即可解得的范围;(3)由(2)的结论可得,令,则有,分别令则有
将这个不等式左右两边分别相加可得.
试题解析:(1)函数定义域为
,当时,,当时,
上单增,在上单减,函数处取得唯一的极值。
由题意得,故所求实数的取值范围为    4分
(2) 当时,不等式.      6分
,由题意,恒成立。

,则,当且仅当时取等号。
所以上单调递增,
因此,则上单调递增,
所以,即实数的取值范围为                 9分
(3)由(2)知,当时,不等式恒成立,
,             11分
,则有
分别令则有
将这个不等式左右两边分别相加,则得

,从而     14分
考点:1.利用导数求函数的极值;2.利用函数单调性解参数范围;3.对数式的运算性质;4.不等式证明.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数的定义域为.
(I)求函数上的最小值;
(Ⅱ)对,不等式恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)当时,求函数的最大值;
(2)若函数没有零点,求实数的取值范围;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数有极小值
(Ⅰ)求实数的值;
(Ⅱ)若,且对任意恒成立,求的最大值为.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数在点处的切线方程是x+ y-l=0,其中e为自然对数的底数,函数g(x)=1nx- cx+ 1+ c(c>0),对一切x∈(0,+)均有恒成立.
(Ⅰ)求a,b,c的值;
(Ⅱ)求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)是否存在点,使得函数的图像上任意一点P关于点M对称的点Q也在函数的图像上?若存在,求出点M的坐标;若不存在,请说明理由;
(2)定义,其中,求
(3)在(2)的条件下,令,若不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知定义在的函数,在处的切线斜率为
(Ⅰ)求的单调区间;
(Ⅱ)当时,恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中为正实数,.
(I)若的一个极值点,求的值;
(II)求的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)设,求的单调区间;
(Ⅱ) 设,且对于任意.试比较的大小.

查看答案和解析>>

同步练习册答案