【题目】已知等差数列{an}的公差为2,前n项和为Sn,且S1,S2,S4成等比数列.
(1)求数列{an}的通项公式;
(2)令,求数列{bn}的前n项和Tn.
科目:高中数学 来源: 题型:
【题目】以直角坐标系的原点为极点,轴的正半轴为极轴,两个坐标系取相等的长度单位.已知圆的参数方程为(为参数),直线的直角坐标方程为.
(1)求圆的普通方程和直线的极坐标方程;
(2)设圆和直线交于两点,求的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知命题的展开式中,仅有第7项的二项式系数最大,则展开式中的常数项为495;命题随机变量服从正态分布,且,则.现给出四个命题:①,②,③,④,其中真命题的是( )
A.①③B.①④C.②③D.②④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某社区消费者协会为了解本社区居民网购消费情况,随机抽取了100位居民作为样本,就最近一年来网购消费金额(单位:千元),网购次数和支付方式等进行了问卷调査.经统计这100位居民的网购消费金额均在区间内,按,,,,,分成6组,其频率分布直方图如图所示.
(1)估计该社区居民最近一年来网购消费金额的中位数;
(2)将网购消费金额在20千元以上者称为“网购迷”,补全下面的列联表,并判断有多大把握认为“网购迷与性别有关系”;
男 | 女 | 合计 | |
网购迷 | 20 | ||
非网购迷 | 45 | ||
合计 | 100 |
(3)调査显示,甲、乙两人每次网购采用的支付方式相互独立,两人网购时间与次数也互不. 影响.统计最近一年来两人网购的总次数与支付方式,所得数据如下表所示:
网购总次数 | 支付宝支付次数 | 银行卡支付次数 | 微信支付次数 | |
80 | 40 | 16 | 24 | |
乙 | 90 | 60 | 18 | 12 |
将频率视为概率,若甲、乙两人在下周内各自网购2次,记两人采用支付宝支付的次数之和为,求的数学期望.
附:观测值公式:
临界值表:
0.01 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在《周髀算经》中,把圆及其内接正方形称为圆方图,把正方形及其内切圆称为方圆图.圆方图和方圆图在我国古代的设计和建筑领域有着广泛的应用.山西应县木塔是我国现存最古老、最高大的纯木结构楼阁式建筑,它的正面图如图所示.以该木塔底层的边作方形,会发现塔的高度正好跟此对角线长度相等.以塔底座的边作方形.作方圆图,会发现方圆的切点正好位于塔身和塔顶的分界.经测量发现,木塔底层的边不少于米,塔顶到点的距离不超过米,则该木塔的高度可能是(参考数据:)( )
A.米B.米C.米D.米
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】圆周率是一个在数学及物理学中普遍存在的数学常数,它既常用又神秘,古今中外很多数学家曾研究它的计算方法.下面做一个游戏:让大家各自随意写下两个小于1的正数然后请他们各自检查一下,所得的两数与1是否能构成一个锐角三角形的三边,最后把结论告诉你,只需将每个人的结论记录下来就能算出圆周率的近似值.假设有个人说“能”,而有个人说“不能”,那么应用你学过的知识可算得圆周率的近似值为()
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在正方体中,点E是棱的中点,点F是线段上的一个动点.有以下三个命题:
①异面直线与所成的角是定值;
②三棱锥的体积是定值;
③直线与平面所成的角是定值.
其中真命题的个数是( )
A. 3 B. 2 C. 1 D. 0
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com