精英家教网 > 高中数学 > 题目详情

【题目】某中学利用周末组织教职员工进行了一次秋季登山健身的活动,有Ⅳ人参加,现将所有参加者按年龄情况分为等七组,其频率分布直方图如图所示,已知这组的参加者是6人.

1)已知这两组各有2名数学教师,现从这两个组中各选取2人担任接待工作,设两组的选择互不影响,求两组选出的人中恰有1名数学老师的概率;

2)组织者从这组的参加者(其中共有4名女教师,其余全为男教师)中随机选取3名担任后勤保障工作,其中女教师的人数为,求的分布列和均值.

【答案】1;(2)见解析.

【解析】

1)根据频率分布直方图,先得到年龄在之间的概率,再由这组的参加者是6人,求得参加的总人数.然后分别求得年龄在之间的人数,然后利用古典概型的概率求解.

2)先得到年龄在的人数,根据有4名女教师,则的可能取值为:123,然后求得相应的概率,列出分布列再求期望.

1)因为年龄在之间的概率为

这组的参加者是6人,

所以参加的总人数为

所以年龄在之间的人数为

年龄在之间的人数为

所以两组选出的人中恰有1名数学老师的概率.

2)年龄在的人数为:,从中随机选取3名担任后勤保障工作,其中女教师的人数为的可能取值为:123

分布列为:

X

1

2

3

p

均值 .

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点F,过F的直线与抛物线交于A,B两点,则的最小值是______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】南北朝时期的伟大数学家祖暅在数学上有突出贡献,他在实践的基础上提出祖暅原理:“幂势既同,则积不容异”.其含义是:夹在两个平行平面之间的两个几何体,被平行于这两个平行平面的任意平面所截,如果截得两个截面的面积总相等,那么这两个几何体的体积相等.如图,夹在两个平行平面之间的两个几何体的体积分别为,被平行于这两个平面的任意平面截得的两个截面面积分别为,则命题:“相等”是命题总相等”的(

A.充分不必要条件B.必要不充分条件

C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行调查,通过抽样,获得某年100为居民每人的月均用水量(单位:吨),将数据按照分成9组,制成了如图所示的频率分布直方图.

(1)求直方图的的值;

(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,说明理由.

(3)估计居民月用水量的中位数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中.

1)讨论函数的单调性;

2)当时,若恒成立,求实数b的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给图中ABCDEF六个区域进行染色,每个区域只染一种颜色,且相邻的区域不同色.若有4种颜色可供选择,则共有___种不同的染色方案.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知甲箱中装有3个红球,2个黑球,乙箱中装有2个红球,3个黑球,这些球除颜色外完全相同,某商场举行有奖促销活动,规定顾客购物1000元以上,可以参与抽奖一次,设奖规则如下:每次分别从以上两个箱子中各随机摸出2个球,共4个球,若摸出4个球都是红球,则获得一等奖,奖金300元;摸出的球中有3个红球,则获得二等奖,奖金200元;摸出的球中有2个红球,则获得三等奖,奖金100元;其他情况不获奖,每次摸球结束后将球放回原箱中.

1)求在1次摸奖中,获得二等奖的概率;

2)若3人各参与摸奖1次,求获奖人数X的数学期望

3)若商场同时还举行打9折促销活动,顾客只能在两项促销活动中任选一项参与.假若你购买了价值1200元的商品,那么你选择参与哪一项活动对你有利?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(其中是实数).

(1)求的单调区间;

(2)若设,且有两个极值点),求取值范围.(其中为自然对数的底数).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,已知是等边三角形,平面,点为棱的中点.

(1)求证:平面

(2)求三棱锥的体积.

查看答案和解析>>

同步练习册答案