精英家教网 > 高中数学 > 题目详情

【题目】已知函数

1,求函数的单调区间:

2)对于任意,不等式恒成立,求实数的取值范围.

【答案】1)见解析(2

【解析】

1)求导后,按照分类,分别解出不等式,即可得解;

2)转化条件得对于任意,不等式恒成立,设,则,设,求导后可得上单调递增,进而可得,使得,即,则,设,求导后可得上单调递增,即可证,代入求出后,即可得解.

1)由题意

i)当时,的解集为,则的单调增区间为,单调减区间为

ii)当时,,则的单调增区间为,无单调减区间;

iii)当时,的解集为,则的单调增区间为,单调减区间为

iiii)当时,的解集为,则的单调增区间为,单调减区间为.

2)由已知,问题等价于对于任意,不等式恒成立,

,则

,则

上,单调递增,

,所以

所以,使得,即

上,单调递减;

上,单调递增;

所以

又有

,则有

所以在上,单调递增,所以

所以

故实数的取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆过点,且离心率

(1)求椭圆方程;

(2)若直线与椭圆交于不同的两点,且线段的垂直平分线过定点,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,曲线C1的参数方程为t为参数),曲线C2的参数方程为α为参数),以坐标原点为极点.x轴正半轴为极轴建立极坐标系.

(Ⅰ)求曲线C1的普通方程和曲线C2的极坐标方程;

(Ⅱ)射线与曲线C2交于OP两点,射线与曲线C1交于点Q,若△OPQ的面积为1,求|OP|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线,与圆有且只有两个公共点.

1)求抛物线的方程;

2)经过的动直线与抛物线交于两点,试问在直线上是否存在定点,使得直线的斜率之和为直线斜率的倍?若存在,求出定点;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正方体中,点E是棱的中点,点F是线段上的一个动点.有以下三个命题:

①异面直线所成的角是定值;

②三棱锥的体积是定值;

③直线与平面所成的角是定值.

其中真命题的个数是( )

A. 3 B. 2 C. 1 D. 0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,动直线交抛物线AB两点.

1)若,证明直线过定点,并求出该定点;

2)点M的中点,过点M作与y轴垂直的直线交抛物线C点;点N的中点,过点N作与y轴垂直的直线交抛物线于点P.设△的面积,△的面积为.

i)若过定点,求使取最小值时,直线的方程;

ii)求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱ABCA1B1C1中,AA1⊥平面ABC,∠BAC90°,ABBC2DE分别为AA1B1C的中点.

1)证明:DE⊥平面BCC1B1

2)若直线BE与平面AA1B1B所成角为30°,求二面角CBDE的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线C的参数方程为为参数,.以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的圾坐标方,且直线l与曲线C相交于AB两点.

1)求曲线C的普通方程和l的直角坐标方程;

2)若,点满足,求此时r的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,设函数

1)试讨论的单调性;

2)设函数,是否存在实数,使得存在两个极值点,且满足?若存在,求的取值范围;若不存在,请说明理由.

注:.

查看答案和解析>>

同步练习册答案