精英家教网 > 高中数学 > 题目详情
精英家教网如图,四棱锥P-ABCD的底面是边长为a的菱形,∠ABC=60°,PC⊥平面ABCD,PC=a,E为PA中点,
(1)求证:平面EDB⊥平面ABCD;
(2)求点E到平面PBC的距离.
分析:(1)欲证平面EDB⊥平面ABCD,根据面面垂直的判定定理可知在平面EDB内一直线与平面ABCD垂直,连接AC与BD相交于O,连接EO,而根据题意可得EO⊥平面ABCD;
(2)在底面作OH⊥BC,垂足为H,根据OE∥平面PBC可知点E到平面PBC的距离就是点O到平面PBC的距离OH,求出OH即可求出点E到平面PBC的距离.
解答:(1)证明:连接AC与BD相交于O,连接EO,则EO∥PC,因为PC⊥平面ABCD,
所以EO⊥平面ABCD,
又EO?平面EDB,
所以平面EDB⊥平面ABCD;

(2)解:在底面作OH⊥BC,垂足为H,
因为平面PCB⊥平面ABCD,
所以OH⊥平面PCB,
又因为OE∥PC,
所以OE∥平面PBC,
所以点E到平面PBC的距离就是点O到平面PBC的距离OH,解得OH=
3
4
a
点评:本小题主要考查平面与平面垂直的判定,以及点、线、面间的距离计算等有关知识,考查空间想象能力、运算能力和推理论证能力,考查转化思想,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,
E是PC的中点.求证:
(Ⅰ)CD⊥AE;
(Ⅱ)PD⊥平面ABE.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,底面ABCD是直角梯形,AB∥CD,∠DAB=60°,AB=AD=2CD=2,侧面PAD⊥底面ABCD,且△PAD为等腰直角三角形,∠APD=90°,M为AP的中点.
(1)求证:AD⊥PB;
(2)求三棱锥P-MBD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD的底面ABCD是矩形,AB=2,BC=
2
,且侧面PAB是正三角形,平面PAB⊥平面ABCD.
(1)求证:PD⊥AC;
(2)在棱PA上是否存在一点E,使得二面角E-BD-A的大小为45°,若存在,试求
AE
AP
的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥底面ABCD,且PA=AB=1,AD=
3
,点F是PB中点.
(Ⅰ)若E为BC中点,证明:EF∥平面PAC;
(Ⅱ)若E是BC边上任一点,证明:PE⊥AF;
(Ⅲ)若BE=
3
3
,求直线PA与平面PDE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD,PA⊥平面ABCD,ABCD是直角梯形,DA⊥AB,CB⊥AB,PA=2AD=BC=2,AB=2
2
,设PC与AD的夹角为θ.
(1)求点A到平面PBD的距离;
(2)求θ的大小;当平面ABCD内有一个动点Q始终满足PQ与AD的夹角为θ,求动点Q的轨迹方程.

查看答案和解析>>

同步练习册答案