【题目】在平面直角坐标系中,已知椭圆经过点,其离心率为.
(1)求椭圆的方程;
(2)已知是椭圆上一点,,为椭圆的焦点,且,求点到轴的距离.
【答案】(1) (2)
【解析】
(1)椭圆E经过点A(4,0),可得 a=4. 椭圆E的离心率e可得c=2. 即可得椭圆E的方程;
(2)由∠F1PF2,所以0,可得x2+y2=12,由,得P到y轴的距离.
(1)因为椭圆经过点,
所以,解得.
又椭圆的离心率,所以.
所以.
因此椭圆的方程为.
(2)方法一:由椭圆的方程,知,.设.
因为,所以,所以.
由解得.
所以,即到轴的距离为.
方法二:由椭圆的方程,知.设.
因为,为的中点,
所以,从而.
由解得.
所以,即到轴的距离为.
方法三:由椭圆的方程,知, .设.
因为,所以.
由椭圆的定义可知,,
所以,
所以三角形的面积.
又,所以,所以.
代入得,.
所以 ,即到轴的距离为.
科目:高中数学 来源: 题型:
【题目】以下四组函数中,表示同一函数的是
A.f(x)=,g(x)=x2–1B.f(x)=,g(x)=x+1
C.f(x)=,g(x)=()2D.f(x)=|x|,g(t)=
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设直线分别是函数 图象上点处的切线,垂直相交于点,且分别与轴相交于点A,B,则△PAB的面积的取值范围是( )
A. (1,+∞) B. (0,2) C. (0,+∞) D. (0,1)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某班共名同学,在一次数学考试中全班同学成绩全部介于分到分之间.将成绩结果按如下方式分成五组:第一组,第二组, ,第五组.按上述分组方法得到的频率分布直方图如图所示,将成绩大于或等于分且小于分记为“良好”, 分以上记为“优秀”,不超过分则记为“及格”.
(1)求该班学生在这次数学考试中成绩“良好”的人数;
(2)若从第一、五组中共随机取出两个成绩,记为取得第一组成绩的个数,求的分布列与数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分12分)
已知数列的前项和,且.
(Ⅰ)求数列的通项公式;
(Ⅱ)令,是否存在,使得、、成等比数列.若存在,求出所有符合条件的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆C: ,定义椭圆C的“相关圆”方程为,若抛物线的焦点与椭圆C的一个焦点重合,且椭圆C短轴的一个端点和其两个焦点构成直角三角形。
(I)求椭圆C的方程和“相关圆”E的方程;
(II)过“相关圆”E上任意一点P作“相关圆”E的切线l与椭圆C交于A,B两点,O为坐标原点。
(i)证明∠AOB为定值;
(ii)连接PO并延长交“相关圆”E于点Q,求△ABQ面积的取值范围。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,,分别为椭圆的左、右焦点.动直线过点,且与椭圆相交于,两点(直线与轴不重合).
(1)若点的坐标为,求点坐标;
(2)点,设直线,的斜率分别为,,求证:;
(3)求面积最大时的直线的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com