精英家教网 > 高中数学 > 题目详情

已知直线y=-2上有一个动点Q,过Q作直线l垂直于x轴,动点P在直线l上,且数学公式数学公式,记点P的轨迹为C1
(1)求曲线C1的方程;
(2)设直线l与x轴交于点A,且数学公式数学公式,试判断直线PB与曲线C1的位置关系,并证明你的结论;
(3)已知圆C2:x2+(y-a)2=2,若C1、C2在交点处的切线相互垂直,求a的值.

解:(1)设点P的坐标为(x,y),则Q(x,-2),
…(2分)
∴x2-2y=0,
当x=0时,P、O、Q三点共线,不符合题意,故x≠0.
∴曲线C的方程为x2=2y(x≠0).
(2)设点P的坐标(x0,y0),∴A(x0,0)∵
∴直线PB的斜率…(5分)
∵x02=2y0∴k=x0∴直线PB的方程为y=x0x-y0…(6分)
代入x2=2y得x2-2x0x+2y0=0,∵△=4x02-8y0=0
∴直线PB与曲线C1相切.…(7分)
(3)不妨设C1、C2的一个交点为N(x1,y1),C1的方程为
则在C1上N点处切线的斜率为y′=x1.C2上过N点的半径的斜率为

,得y1=-a,x12=-2a…(10分)
∵N(x1,y1)在圆C2上,∴-2a+4a2=2,∴或a=1
∵y1>0∴a<0,∴…(12分)
分析:(1)先设P点坐标,进而得出Q点坐标,再根据OP⊥OQ 得到∴,从而得解.
(2)先求直线PB的方程,再代入x2=2y得x2-2x0x+2y0=0,利用△=4x02-8y0=0,可得直线PB与曲线C1相切.
(3)分别求出在C1上N点处切线的斜率为,C2上过N点的半径的斜率,利用C1、C2在交点处的切线相互垂直,可建立方程,再利用点在圆上可解,
点评:本题的考点是曲线与方程,主要考查直接法求轨迹方程,考查直线与曲线的位置关系,关键是利用直线与方程组成方程组,从而利用方程的思想研究.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知直线y=-2上有一个动点Q,过点Q作直线l1垂直于x轴,动点P在l1上,且满足OP⊥OQ(O为坐标原点),记点P的轨迹为C.
(1)求曲线C的方程;
(2)若直线l2是曲线C的一条切线,当点(0,2)到直线l2的距离最短时,求直线l2的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线y=-2上有一个动点Q,过Q作直线l垂直于x轴,动点P在直线l上,且
OP
OQ
,记点P的轨迹为C1
(1)求曲线C1的方程;
(2)设直线l与x轴交于点A,且
OB
=
PA
(
OB
≠0)
,试判断直线PB与曲线C1的位置关系,并证明你的结论;
(3)已知圆C2:x2+(y-a)2=2,若C1、C2在交点处的切线相互垂直,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线y=-2上有一个动点Q,过Q作直线l垂直于x轴,动点P在直线l上,且,记点P的轨迹为C1.

(1)求曲线C1的方程.

(2)设直线l与x轴交于点A,且=(≠0).试判断直线PB与曲线C1的位置关系,并证明你的结论.

(3)已知圆C2:x2+(y-a)2=2,若C1、C2在交点处的切线互相垂直,求a的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知直线y=-2上有一个动点Q,过Q作直线l垂直于x轴,动点P在直线l上,且
OP
OQ
,记点P的轨迹为C1
(1)求曲线C1的方程;
(2)设直线l与x轴交于点A,且
OB
=
PA
(
OB
≠0)
,试判断直线PB与曲线C1的位置关系,并证明你的结论;
(3)已知圆C2:x2+(y-a)2=2,若C1、C2在交点处的切线相互垂直,求a的值.

查看答案和解析>>

科目:高中数学 来源:2011年广东省广州市高考数学一模试卷(理科)(解析版) 题型:解答题

已知直线y=-2上有一个动点Q,过点Q作直线l1垂直于x轴,动点P在l1上,且满足OP⊥OQ(O为坐标原点),记点P的轨迹为C.
(1)求曲线C的方程;
(2)若直线l2是曲线C的一条切线,当点(0,2)到直线l2的距离最短时,求直线l2的方程.

查看答案和解析>>

同步练习册答案