精英家教网 > 高中数学 > 题目详情
5.下列函数中,是奇函数,又是定义域内为减函数的是(  )
A.y=|$\frac{1}{2}$|xB.y=$\frac{1}{x}$C.y=-x3D.y=x2

分析 根据奇函数图象的对称性,指数函数的图象,反比例函数在定义域上的单调性,奇函数和减函数的定义,便可判断每个选项的正误,从而得出正确选项.

解答 解:A.$y=(\frac{1}{2})^{x}$,该函数图象不关于原点对称,不是奇函数;
B.$y=\frac{1}{x}$在定义域内没有单调性;
C.y=-x3,显然该函数为奇函数,根据减函数的定义知,在定义域内为减函数,即该选项正确;
D.y=x2,该函数为偶函数,不是奇函数.
故选C.

点评 考查指数函数的图象,奇函数的定义,减函数的定义,以及奇函数图象的对称性.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.过双曲线y=$\frac{k}{x}$(常数k>0)上任意一点A作AE∥x轴交y轴于E,作AF∥y轴交x轴于F,得到矩形AEOF,设它的面积为S,则S=k,k是与点A位置无关的常数,试把这个结论推广到一般双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0),并证明你的推广.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设等差数列{an}的前n项和为Sn,若S7=42,则a2+a3+a7=18.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.函数f(x)=ax3-sinbx+2015(x∈R),若$f(\frac{π}{4})=1$,则$f(-\frac{π}{4})$=4029.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.m∈R,函数f(x)=mx-lnx+1.
(1)当m=1时,求函数f(x)的单调区间和极值;
(2)将函数f(x)的图象向下平移1个单位后得到g(x)的图象,且x1=$\sqrt{e}$(e为自然对数的底数)和x2是函数g(x)的两个不同的零点,求m的值并证明:x2>e$\sqrt{e}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若两条直线ax+2y+6=0与x+(a-1)y+(a2-1)=0平行,则a的取值集合是(  )
A.{-1,2}B.{-1}C.{2}D.$\left\{{\frac{2}{3}}\right\}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.${(x-\frac{2}{x^2})^6}$展开式中的常数项为(  )
A.60B.-60C.30D.-30

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设函数f(x)的定义域D,如果存在正实数m,使得对任意x∈D,都有f(x+m)>f(x),则称f(x)为D上的“m型增函数”.已知函数f(x)是定义在R上的奇函数,且当x>0时,f(x)=|x-a|-a(a∈R).若f(x)为R上的“20型增函数”,则实数a的取值范围是(  )
A.a>0B.a<5C.a<10D.a<20

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若x,y满足$\left\{\begin{array}{l}x-y+3≥0\\ x+y+1≥0\\ x≤k\end{array}\right.$且z=2x+y的最大值为6,则k的值为(  )
A.-1B.1C.-7D.7

查看答案和解析>>

同步练习册答案