精英家教网 > 高中数学 > 题目详情

【题目】如图,在三角形中,,平面与半圆弧所在的平面垂直,点为半圆弧上异于的动点,的中点.

1)求证:

2)求三棱锥体积的最大值.

【答案】1)见解析;(2.

【解析】

1)由题意可知平面,则,又,再根据线面垂直的判定与性质即可得出结论;

2)由题意得,由此可得当为半圆弧的中点时体积有最大值,从而求出答案

1)证\:因为平面与半圆所在的平面垂直,交线为

,即,所以垂直于半圆所在平面,

在半圆平面内,故

为直径,点为半圆弧上一点,故

,因此平面

平面,所以

2)解:由题意知,点的中点,

所以点到半圆面的距离是点到半圆面距离的一半,

因此

(其中为点的距离),

当点半圆弧的中点时,最大,且最大值为1

因此的最大值为2

故三棱锥体积的最大值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】谈祥柏先生是我国著名的数学科普作家,他写的《数学百草园》、《好玩的数学》、《故事中的数学》等书,题材广泛、妙趣横生,深受广大读者喜爱.下面我们一起来看《好玩的数学》中谈老的一篇文章《五分钟内挑出埃及分数》:文章首先告诉我们,古埃及人喜欢使用分子为1的分数(称为埃及分数).如用两个埃及分数的和表示.100个埃及分数中挑出不同的3个,使得它们的和为1,这三个分数是________.(按照从大到小的顺序排列)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于圆周率,数学发展史上出现过许多有创意的求法,如著名的普丰实验和查理斯实验.受其启发,我们也可以通过设计下面的实验来估计的值:先请120名同学每人随机写下一个xy都小于1的正实数对,再统计其中xy能与1构成钝角三角形三边的数对的个数m,最后根据统计个数m估计的值.如果统计结果是,那么可以估计的值为( )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,已知倾斜角为的直线过点,以坐标原点为极点,轴的正半轴为极轴建立极坐标系.曲线的极坐标方程为,直线与曲线分别交于两点.

1)写出直线的参数方程和曲线的直角坐标方程;

2)若,求直线的斜率

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一款击鼓小游戏的规则如下:每盘游戏都需击鼓三次,每次击鼓后要么出现一次音乐,要么不出现音乐;每盘游戏击鼓三次后,出现三次音乐获得150分,出现两次音乐获得100分,出现一次音乐获得50分,没有出现音乐则获得-300.设每次击鼓出现音乐的概率为,且各次击鼓出现音乐相互独立.

1)若一盘游戏中仅出现一次音乐的概率为,求的最大值点

2)以(1)中确定的作为的值,玩3盘游戏,出现音乐的盘数为随机变量,求每盘游戏出现音乐的概率,及随机变量的期望

3)玩过这款游戏的许多人都发现,若干盘游戏后,与最初的分数相比,分数没有增加反而减少了.请运用概率统计的相关知识分析分数减少的原因.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线C1a0b0)的左右焦点为F1F2过点F1的直线l与双曲线C的左支交于AB两点,BF1F2的面积是AF1F2面积的三倍,∠F1AF290°,则双曲线C的离心率为(  )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某农科站技术员为了解某品种树苗的生长情况,在该批树苗中随机抽取一个容量为100的样本,测量树苗高度(单位:).经统计,高度在区间内,将其按分成6组,制成如图所示的频率分布直方图,其中高度不低于的树苗为优质树苗.

附:

,其中

1)求频率分布直方图中的值;

2)已知所抽取的这100棵树苗来自于甲、乙两个地区,部分数据如下列联表所示,将列联表补充完整,并根据列联表判断是否有%的把握认为优质树苗与地区有关?

甲地区

乙地区

合计

优质树苗

5

非优质树苗

25

合计

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,下述四个结论:

是偶函数;

的最小正周期为

的最小值为0

上有3个零点

其中所有正确结论的编号是(

A.①②B.①②③C.①③④D.②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现有橡皮泥制作的底面半径为5,高为9的圆锥和底面半径为,高为8的圆柱各一个.若将它们重新制作成总体积与各自的高均保持不变,但底面半径相同的新的圆锥与圆柱各一个,则新的底面半径为_________;若新圆锥的内接正三棱柱表面积取到最大值,则此正三棱柱的底面边长为_________.

查看答案和解析>>

同步练习册答案