精英家教网 > 高中数学 > 题目详情
17、17、一场晚会有5个唱歌节目和3个舞蹈节目,要求排出一个节目单
(1)前4个节目中要有舞蹈,有多少种排法?
(2)3个舞蹈节目要排在一起,有多少种排法?
(3)3个舞蹈节目彼此要隔开,有多少种排法?
分析:(1)先不考虑限制条件,8个节目全排列有A88种方法,前4个节目中要有舞蹈的否定是前四个节目全是唱歌有A54A44,用所有的排列减去不符合条件的排列,得到结果.
(2)要把3个舞蹈节目要排在一起,则可以采用捆绑法,把三个舞蹈节目看做一个元素和另外5个元素进行全排列,不要忽略三个舞蹈节目本身也有一个排列.
(3)3个舞蹈节目彼此要隔开,可以用插空法来解,即先把5个唱歌节目排列,形成6个位置,选三个把舞蹈节目排列.
解答:解(1)∵8个节目全排列有A88=40320种方法,
若前4个节目中要有舞蹈的否定是前四个节目全是唱歌有A54A44
∴前4个节目中要有舞蹈有A88-A54A44=37400,.
(2)∵3个舞蹈节目要排在一起,
∴可以把三个舞蹈节目看做一个元素和另外5个元素进行全排列,
三个舞蹈节目本身也有一个排列有A66A33=4320,
(3)3个舞蹈节目彼此要隔开,
可以用插空法来解,
先把5个唱歌节目排列,形成6个位置,选三个把舞蹈节目排列,
有A55A63=14400.
点评:本题是一个排列组合典型,文科在高考时能考到,理科近几年单独考查排列组合的题目都是以选择和填空出现,实际上所有的排列都可以看作是先取组合,再做全排列;同样,组合如补充一个阶段(排序)可转化为排列问题.
练习册系列答案
相关习题

同步练习册答案