精英家教网 > 高中数学 > 题目详情
在数列{an}中,a1=1,且对任意的k∈N*,a2k-1,a2k,a2k+1成等比数列,其公比为qk
(1)若qk=2(k∈N*),求a1+a3+a5+…+a2k-1
(2)若对任意的k∈N*,a2k,a2k+1,a2k+2成等差数列,其公差为dk,设
①求证:{bk}成等差数列,并指出其公差;
②若d1=2,试求数列{dk}的前k项的和Dk
【答案】分析:(1)由题设知,由此能求出a1+a3+a5+…+a2k-1的值.
(2)①由a2k,a2k+1,a2k+2成等差数列,其公差为dk,知2a2k+1=a2k+a2k+2,再由,能够证明{bk}是等差数列,且公差为1.
②由d1=2,得a3=a2+2,解得a2=2,或a2=-1.由此进行分类讨论,能够求出Dk
解答:解:(1)∵数列{an}中,a1=1,且对任意的k∈N*,a2k-1,a2k,a2k+1成等比数列,公比qk=2(k∈N*),

∴a1+a3+a5+…+a2k-1==
(2)①∵a2k,a2k+1,a2k+2成等差数列,其公差为dk
∴2a2k+1=a2k+a2k+2
,a2k+2=a2k+1•qk+1
,则

,即bk+1-bk=1,
∴{bk}是等差数列,且公差为1.
②∵d1=2,∴a3=a2+2,
则有
解得a2=2,或a2=-1.
(i)当a2=2时,q1=2,∴b1=1,
则bk=1+(k-1)×1=k,
,得
=

=
=(k+1)2

则dk=a2k+1-a2k=k+1,

(ii)当a2=-1时,qk=-1,
,则
=k-
,得
∴a2k+1=
=××…××1=(k-2
=(2k-1)(2k-3),
∴dk=a2k+1-a2k=4k-2,
从而Dk=2k2
综上所述,Dk=,或
点评:本题考查数列的前n项和的计算,等差数列的证明,综合性强,难度大,是高考的重点.解题时要认真审题,仔细解答,注意计算能力的培养.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在数列{an}中,
a
 
1
=1
an=
1
2
an-1+1
(n≥2),则数列{an}的通项公式为an=
2-21-n
2-21-n

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a 1=
1
3
,并且对任意n∈N*,n≥2都有an•an-1=an-1-an成立,令bn=
1
an
(n∈N*).
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)设数列{
an
n
}的前n项和为Tn,证明:
1
3
Tn
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a=
12
,前n项和Sn=n2an,求an+1

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a1=a,前n项和Sn构成公比为q的等比数列,________________.

(先在横线上填上一个结论,然后再解答)

查看答案和解析>>

科目:高中数学 来源:2012-2013学年广东省汕尾市陆丰市碣石中学高三(上)第四次月考数学试卷(理科)(解析版) 题型:解答题

在数列{an}中,a,并且对任意n∈N*,n≥2都有an•an-1=an-1-an成立,令bn=(n∈N*).
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)设数列{}的前n项和为Tn,证明:

查看答案和解析>>

同步练习册答案