精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

1)求的极值;

2)设,若当时,恒成立,求实数m的取值范围.

【答案】1)答案不唯一,具体见解析(2

【解析】

(1)求导可得,再分两种情况分别讨论导函数的正负以及原函数的单调性即可.

(2)易得,再求导分析的单调性,进而求出最小值,再利用恒成立问题的方法解决即可.

1)由条件得的定义域为,.

①当时,,所以上单调递增.

②当时,令,得(负值舍去),

因为当,当时,,

所以上单调递减,在上单调递增.

综上,①当时,无极值;

②当时,有极小值,无极大值.

2)当时,.

.

.

,得,

因为当时,,当,

所以的单调递减区间为,单调递增区间为,

所以的极小值也是最小值为

因为上恒成立,

所以,即,

故实数m的取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】古希腊著名数学家阿波罗尼斯与欧几里得、阿基米德齐名.他发现:“平面内到两个定点的距离之比为定值的点的轨迹是圆”.后来,人们将这个圆以他的名字命名,称为阿波罗尼斯圆,简称阿氏圆在平面直角坐标系中,.设点的轨迹为,下列结论正确的是( )

A. 的方程为

B. 轴上存在异于的两定点,使得

C. 三点不共线时,射线的平分线

D. 上存在点,使得

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆Γ的左,右焦点分别为F1(0)F2(0),椭圆的左,右顶点分别为AB,已知椭圆Γ上一异于AB的点PPAPB的斜率分别为k1k2,满足.

1)求椭圆Γ的标准方程;

2)若过椭圆Γ左顶点A作两条互相垂直的直线AMAN,分别交椭圆ΓMN两点,问x轴上是否存在一定点Q,使得MQA=∠NQA成立,若存在,则求出该定点Q,否则说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥,底面为正方形,且底面的平面与侧面的交线为且满足表示的面积.

(1)证明: 平面

(2)当时,二面角的余弦值为的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的顶点在坐标原点,准线方程为为抛物线的焦点,点为直线上任意一点,以为圆心,为半径的圆与抛物线的准线交于两点,过分别作准线的垂线交抛物线于点.

1)求抛物线的方程;

2)证明:直线过定点,并求出定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为坐标原点,圆,定点,点是圆上一动点,线段的垂直平分线交圆的半径于点,点的轨迹为

Ⅰ)求曲线的方程;

Ⅱ)不垂直于轴且不过点的直线与曲线相交于两点,若直线的斜率之和为0,则动直线是否一定经过一定点?若过一定点,则求出该定点的坐标;若不过定点,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一款小游戏的规则如下:每轮游戏要进行三次,每次游戏都需要从装有大小相同的2个红球,3个白球的袋中随机摸出2个球,若摸出的两个都是红球出现3次获得200分,若摸出两个都是红球出现1次或2次获得20分,若摸出两个都是红球出现0次则扣除10分(即获得分).

1)设每轮游戏中出现摸出两个都是红球的次数为,求的分布列;

2)玩过这款游戏的许多人发现,若干轮游戏后,与最初的分数相比,分数没有增加反而减少了,请运用概率统计的相关知识分析解释上述现象.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】无线电技术在航海中有很广泛的应用,无线电波可以作为各种信息的载体.现有一艘航行中的轮船需要与陆地上的基站进行通信,其连续向基站拍发若干次呼叫信号,每次呼叫信号被基站收到的概率都是0.2,基站收到呼叫信号后立即向轮船拍发回答信号,回答信号一定能被轮船收到.

(Ⅰ)若要保证基站收到信号的概率大于0.99,求轮船至少要拍发多少次呼叫信号.

(Ⅱ)设(Ⅰ)中求得的结果为.若轮船第一次拍发呼叫信号后,每隔5秒钟拍发下一次,直到收到回答信号为止,已知该轮船最多拍发次呼叫信号,且无线电信号在轮船与基站之间一个来回需要16秒,设轮船停止拍发时,一共拍发了次呼叫信号,求的数学期望(结果精确到0.01).

参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,以原点O为极点,x轴的正半轴为极轴建立极坐标系,两种坐标系中取相同的长度单位.已知直线l的参数方程为t为参数),曲线C的极坐标方程为ρ=4sinθ+).

(1)求直线l的普通方程与曲线C的直角坐标方程;

(2)若直线l与曲线C交于MN两点,求△MON的面积.

查看答案和解析>>

同步练习册答案