精英家教网 > 高中数学 > 题目详情
已知f(x)=m(x-2m)(x+m+3),g(x)=2x-2.若同时满足条件:
(1)?x∈R,f(x)<0或g(x)<0;
(2)?x∈(-∞,-4),f(x)g(x)<0.
则m的取值范围是(  )
分析:由(1)可推得f(x)=m(x-2m)(x+m+3)<0在x≥1时恒成立,建立关于m的不等式组可得m的范围,然后由(2)可得:?x∈(-∞,-4),使(x-2m)(x+m+3)<0成立,只要使-4比2m,-m-3中较小的一个大即可,分类讨论可得m的范围,综合可得.
解答:解:∵g(x)=2x-2,当x≥1时,g(x)≥0,
又∵?x∈R,f(x)<0或g(x)<0
∴f(x)=m(x-2m)(x+m+3)<0在x≥1时恒成立
所以二次函数图象开口只能向下,且与x轴交点都在(1,0)的左侧,
即 
m<0
-m-3<1
2m<1
,解得-4<m<0;
又因为?x∈(-∞,-4),f(x)g(x)<0.
而此时有g(x)=2x-2<0.
∴?x∈(-∞,-4),使f(x)=m(x-2m)(x+m+3)>0成立,
由于m<0,所以?x∈(-∞,-4),使(x-2m)(x+m+3)<0成立,
故只要使-4比2m,-m-3中较小的一个大即可,
当m∈(-1,0)时,2m>-m-3,只要-4>-m-3,解得m>1与m∈(-1,0)的交集为空集;
当m=-1时,两根为-2;-2>-4,不符合;
当m∈(-4,-1)时,2m<-m-3,∴只要-4>2m,解得m<-2,
综上可得m的取值范围是:(-4,-2)
故选C
点评:本题为二次函数和指数函数的综合应用,涉及数形结合的思想,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=m-
1
1+ax
(a>0且a≠1,x∈R)满足f(-x)=-f(x)
(1)求m的值;
(2)当a=2时,求f(1)的值,并解不等式0<f(x2-x-2)
1
6

(3)沿着射线y=-x(x≥0)的方向将f(x)的图象平移
2
2
个单位,得到g(x)的图象,求g(x)并求g(-2)+g(-1)+g(0)+g(1)+g(2)+g(3)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f 1(x)=|3x-1|,f2(x)=|a•3x-9|(a>0),x∈R,且f(x)=
f1(x),f1(x)≤f2(x)
f2(x),f1(x)>f2(x)

(1)当a=1时,求f(x)的解析式;
(2)在(1)的条件下,若方程f(x)-m=0有4个不等的实根,求实数m的范围;
(3)当2≤a<9时,设f(x)=f2(x)所对应的自变量取值区间的长度为l(闭区间[m,n]的长度定义为n-m),试求l的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=esinx-ksinx.
(Ⅰ)若k=e,试确定函数f(x)的单调递增区间;
(Ⅱ)若对于任意x∈R,f(x)>0恒成立,试确定实数k的取值范围;
(Ⅲ)若函数g(x)=f(x)+f(-x)-m在x∈[
π
4
4
]
上有两个零点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=m(x-2m)(x+m+3),g(x)=2x-2,若满足对于任意x∈R,f(x)<0和g(x)<0至少有一个成立.则m的取值范围是
 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知f(x)=m-
1
1+ax
(a>0且a≠1,x∈R)满足f(-x)=-f(x)
(1)求m的值;
(2)当a=2时,求f(1)的值,并解不等式0<f(x2-x-2)
1
6

(3)沿着射线y=-x(x≥0)的方向将f(x)的图象平移
2
2
个单位,得到g(x)的图象,求g(x)并求g(-2)+g(-1)+g(0)+g(1)+g(2)+g(3)的值.

查看答案和解析>>

同步练习册答案