【题目】若对圆上任意一点,的取值与,无关,则实数的取值范围是________.
【答案】
【解析】
由题意可得故|3x﹣4y+a|+|3x﹣4y﹣9|可以看作点P到直线m:3x﹣4y+a=0与直线l:3x﹣4y﹣9=0距离之和的5倍,进一步分析说明圆位于两直线内部,再由点到直线的距离公式求解直线3x﹣4y+a=0与圆相切时的a值,则答案可求.
设z=|3x﹣4y+a|+|3x﹣4y﹣9|=5(),
故|3x﹣4y+a|+|3x﹣4y﹣9|可以看作点P(x,y)到直线m:3x﹣4y+a=0与直线l:3x﹣4y﹣9=0距离之和的5倍,
∵|3x﹣4y+a|+|3x﹣4y﹣9|的取值与x,y无关,
∴这个距离之和与点P在圆上的位置无关,
如图所示:可知直线m平移时,P点与直线m,l的距离之和均为m,l的距离,
即此时圆在两直线内部,
当直线m与圆相切时,,
化简得|a﹣1|=5,
解得a=6或a=﹣4(舍去),
∴a≥6.
故答案为:a≥6.
科目:高中数学 来源: 题型:
【题目】将参加数学竞赛的500名同学编号为001,002,…,500,采用系统抽样的方法抽取一个容量为50的样本,且随机抽到的号码为005,这500名学生分别在三个考点考试,从001到200在第一考点,从201到365在第二考点,从366到500在第三考点,则第二考点被抽中的人数为____.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】
11分制乒乓球比赛,每赢一球得1分,当某局打成10:10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10:10平后,甲先发球,两人又打了X个球该局比赛结束.
(1)求P(X=2);
(2)求事件“X=4且甲获胜”的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分12分)
已知抛物线C的方程C:y2="2" p x(p>0)过点A(1,-2).
(I)求抛物线C的方程,并求其准线方程;
(II)是否存在平行于OA(O为坐标原点)的直线l,使得直线l与抛物线C有公共点,且直线OA与l的距离等于?若存在,求出直线l的方程;若不存在,说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等差数列的前n项和为,并且,数列满足:,,记数列的前n项和为.
(1)求数列的通项公式及前n项和为;
(2)求数列的通项公式及前n项和为;
(3)求的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com