精英家教网 > 高中数学 > 题目详情

【题目】已知函数,直线与曲线y=fx)和y=gx)分别交于MN两点,设曲线y=fx)在点M处的切线为,在点N处的切线为

1)当b=1时,若,求a的值

2)若,求实数a的取值范围

【答案】1;(2

【解析】

1)求导,利用导数的几何意义求出两条直线的斜率,利用两条直线垂直斜率的关系即可得到答案.

2)如(1)的做法利用两直线平行的斜率的关系即可得到关于的方程,构造函数,利用导数研究此函数的单调性,根据单调性即可得到实数a的取值范围.

依题函数的定义域为,且

函数的定义域为,

1)当时,直线的斜率为

直线的斜率为

,则若,所以,即.

2)直线的斜率为

直线的斜率为

,则,所以,即

,则的定义域为

所以,令,解得.

时,;当时,.

所以上单调递增,在上单调递减,

所以处取得最大值

所以实数的取值范围为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,以为极点,轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为;直线的参数方程为为参数),直线与曲线分别交于两点.

(1)写出曲线的直角坐标方程和直线的普通方程;

(2)若点的极坐标为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的参数方程为为参数),直线的参数方程为为参数),设直线的交点为,当变化时点的轨迹为曲线.

1)求出曲线的普通方程;

2)以坐标原点为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为,点为曲线上的动点,求点到直线的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为践行“绿水青山就是金山银山”的发展理念,贵阳一中“保护饮用水源地”课题研究小组的同学们对红枫湖、百花湖、阿哈水库、花溪水库、北郊水库5处水源地进行了样本采集并送环保部门进行水质检测.已知5处水源地中有1处被某污染物污染,需要通过检测水源样本来确定被污染的水源地现有三个检測方案:

方案甲:对5个样本逐个检测,直到能确定被污染的水源地为止.

方案乙:先任取1个样本进行检测,若检测到污染物,则检测结束;若未检测到污染物,则在剩余4个样本中任取2个,并将这2个样本取部分混合在一起检测,若检测到污染物,则再在这2个样本中任取一个检测,否则在剩余2个未检测样本中任取一个检测.

方案丙:先任取2个样本,并将这2个样本取部分混合在一起检测,若检测到污染物,则再在这2个样本中任取一个检测;若未检测到污染物,则对剩余3个未检测样本进行逐个检测,直到能确定被污染的水源地为止.假设随机变量分别表示用方案甲、方案乙、方案丙进行检测所需的检测次数.

1)求能取到的最大值和其对应的概率;

2)求的期望假设每次检测的费用都相同,请从经济角度说明方案乙和方案丙哪一个更适合?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

求函数的单调区间和极值;

,且是曲线上的任意两点,若对任意的,直线AB的斜率恒大于常数m,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《中华人民共和国道路交通安全法》第47条的相关规定:机动车行经人行横道时,应当减速慢行;遇行人正在通过人行横道,应当停车让行,俗称“礼让斑马线”,《中华人民共和国道路交通安全法》 第90条规定:对不礼让行人的驾驶员处以扣3分,罚款50元的处罚.下表是某市一主干路口监控设备所抓拍的5个月内驾驶员不“礼让斑马线”行为统计数据:

月份

1

2

3

4

5

违章驾驶员人数

120

105

100

90

85

(1)请利用所给数据求违章人数y与月份之间的回归直线方程+

(2)预测该路口7月份的不“礼让斑马线”违章驾驶员人数;

(3)交警从这5个月内通过该路口的驾驶员中随机抽查了50人,调查驾驶员不“礼让斑马线”行为与驾龄的关系,得到如下2列联表:

不礼让斑马线

礼让斑马线

合计

驾龄不超过1年

22

8

30

驾龄1年以上

8

12

20

合计

30

20

50

能否据此判断有97.5的把握认为“礼让斑马线”行为与驾龄有关?

参考公式及数据:,.

0.150

0.100

0.050

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥EABCD中,底面ABCD为矩形,平面ABCD⊥平面ABE,∠AEB90°BEBCFCE的中点,

1)求证:AE∥平面BDF

2)求证:平面BDF⊥平面ACE

32AEEB,在线段AE上找一点P,使得二面角PDBF的余弦值为,求P的位置.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数=lnx+ax2+(2a+1)x

(1)讨论的单调性;

(2)当a﹤0时,证明

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中取两个定点,再取两个动点,且.

(1)求直线的交点的轨迹的方程;

(2)的直线与轨迹交于两点,过点轴且与轨迹交于另一点为轨迹的右焦点,若,求证:

查看答案和解析>>

同步练习册答案