ÔÚA¡¢B¡¢C¡¢DËÄСÌâÖÐÖ»ÄÜÑ¡×ö2Ì⣬ÿСÌâ10·Ö£¬¹²¼Æ20·Ö£¬ÇëÔÚ´ðÌâÖ½Ö¸¶¨ÇøÓòÄÚ×÷´ð£¬½â´ðӦд³öÎÄ×Ö˵Ã÷¡¢Ö¤Ã÷¹ý³Ì»òÑÝËã²½Ö裮
A£®Ñ¡ÐÞ4-1£º£¨¼¸ºÎÖ¤Ã÷Ñ¡½²£©
Èçͼ£¬´ÓOÍâÒ»µãP×÷Ô²OµÄÁ½ÌõÇÐÏߣ¬Çеã·Ö±ðΪA£¬B£¬
ABÓëOP½»ÓÚµãM£¬ÉèCDΪ¹ýµãMÇÒ²»¹ýÔ²ÐÄOµÄÒ»ÌõÏÒ£¬
ÇóÖ¤£ºO£¬C£¬P£¬DËĵ㹲Բ£®
B£®Ñ¡ÐÞ4-2£º£¨¾ØÕóÓë±ä»»£©
ÒÑÖª¶þ½×¾ØÕóMÓÐÌØÕ÷Öµ¦Ë=3¼°¶ÔÓ¦µÄÒ»¸öÌØÕ÷ÏòÁ¿e1=[]£¬²¢ÇÒ¾ØÕóM¶ÔÓ¦µÄ±ä»»½«µã£¨-1£¬2£©±ä»»³É£¨9£¬15£©£¬Çó¾ØÕóM£®
C£®Ñ¡ÐÞ4-4£º£¨×ø±êϵÓë²ÎÊý·½³Ì£©
ÔÚ¼«×ø±êϵÖУ¬ÇúÏßCµÄ¼«×ø±ê·½³ÌΪp=2sin£¨£©£¬ÒÔ¼«µãΪԭµã£¬¼«ÖáΪxÖáµÄÕý°ëÖὨÁ¢Æ½ÃæÖ±½Ç×ø±êϵ£¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ£¨tΪ²ÎÊý£©£¬ÇóÖ±Ïßl±»ÇúÏßCËù½ØµÃµÄÏÒ³¤£®
D£®Ñ¡ÐÞ4-5£¨²»µÈʽѡ½²£©
ÒÑ֪ʵÊýx£¬y£¬zÂú×ãx+y+z=2£¬Çó2x2+3y2+z2µÄ×îСֵ£®

¡¾´ð°¸¡¿·ÖÎö£ºA£®ÒòΪPA£¬PBΪԲOµÄÁ½ÌõÇÐÏߣ¬ËùÒÔOP´¹Ö±Æ½·ÖÏÒAB£¬ÔÚRt¡÷OAPÖУ¬OM•MP=AM2£¬Ô²OÖУ¬AM•BM=CM•DM£¬ÓÉ´ËÄܹ»Ö¤Ã÷O£¬C£¬P£¬DËĵ㹲Բ£®
B£®ÉèM=£¬Ôò=3=£¬=£¬ÓÉ´ËÄÜÇó³öM£®
C£®½«¦Ñ=2sin£¨£©£¬·Ö±ð»¯ÎªÆÕͨ·½³Ì£ºx2+y2+2x-2y=0£¬3x+4y+1=0£¬ÓÉ´ËÄÜÇó³öÏÒ³¤£®
D£®ÓÉ¿ÂÎ÷²»µÈʽ֪£º£¨x+y+z£©2¡Ü[£¨£©2+£¨£©2+z2]•[£¨£©2+£¨£©2+12]£¬¹Ê£¬ÓÉ´ËÄÜÇó³ö2x2+3y2+z2µÄ×îСֵ£®
½â´ð£ºA£®Ñ¡ÐÞ4-1£º£¨¼¸ºÎÖ¤Ã÷Ñ¡½²£©
Ö¤Ã÷£ºÒòΪPA£¬PBΪԲOµÄÁ½ÌõÇÐÏߣ¬
ËùÒÔOP´¹Ö±Æ½·ÖÏÒAB£¬
ÔÚRt¡÷OAPÖУ¬OM•MP=AM2£¬¡­£¨4·Ö£©
ÔÚÔ²OÖУ¬AM•BM=CM•DM£¬
ËùÒÔOM•MP=CM•DM£¬¡­£¨8·Ö£©
ÓÖÏÒCD²»¹ýÔ²ÐÄO£¬ËùÒÔO£¬C£¬P£¬DËĵ㹲Բ£®¡­£¨10·Ö£©
B£®Ñ¡ÐÞ4-2£º£¨¾ØÕóÓë±ä»»£©
ÉèM=£¬Ôò=3=£¬
¹Ê£®¡­£¨4·Ö£©
=£¬¹Ê£®¡­£¨7·Ö£©
ÁªÁ¢ÒÔÉÏÁ½·½³Ì×é½âµÃa=-1£¬b=4£¬c=-3£¬d=6£¬
¹ÊM=£® ¡­£¨10·Ö£©
C£®Ñ¡ÐÞ4-4£º£¨×ø±êϵÓë²ÎÊý·½³Ì£©
½â£º½«·½³Ì¦Ñ=2sin£¨£©£¬·Ö±ð»¯ÎªÆÕͨ·½³Ì£º
x2+y2+2x-2y=0£¬3x+4y+1=0£¬¡­£¨6·Ö£©
ÓÉÇúÏßCµÄÔ²ÐÄΪC£¨-1£¬1£©£¬°ë¾¶Îª£¬
ËùÒÔÔ²ÐÄCµ½Ö±ÏßlµÄ¾àÀëΪ£¬
¹ÊËùÇóÏÒ³¤Îª=£®¡­£¨10·Ö£©
D£®Ñ¡ÐÞ4-5£¨²»µÈʽѡ½²£©
½â£ºÓÉ¿ÂÎ÷²»µÈʽ¿ÉÖª£º
£¨x+y+z£©2¡Ü[£¨£©2+£¨£©2+z2]•[£¨£©2+£¨£©2+12]£¬¡­£¨5·Ö£©
¹Ê£¬
µ±ÇÒ½öµ±£¬
¼´£ºx=£¬y=£¬z=ʱ£¬
2x2+3y2+z2È¡µÃ×îСֵΪ£®¡­£¨10·Ö£©
µãÆÀ£ºA¿¼²éÓëÔ²ÓйصıÈÀýÏ߶εÄÓ¦Óã¬B¿¼²é¾ØÕóÓë±ä»»µÄÓ¦Óã¬C¿¼²é¼«×ø±êÓë²ÎÊý·½³ÌµÄÓ¦Óã¬D¿¼²é¿ÂÎ÷²»µÈʽµÄÓ¦Ó㬽âÌâʱҪÈÏÕæÉóÌ⣬×Ðϸ½â´ð£¬×¢ÒâµÈ¼Ûת»¯Ë¼ÏëµÄÁé»îÔËÓã®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÔÚA¡¢B¡¢C¡¢DËÄСÌâÖÐÖ»ÄÜÑ¡×ö2Ì⣬ÿСÌâ10·Ö£¬¹²¼Æ20·Ö£®ÇëÔÚ´ðÌâÖ½Ö¸¶¨ÇøÓòÄÚ ×÷´ð£®½â´ðӦд³öÎÄ×Ö˵Ã÷¡¢Ö¤Ã÷¹ý³Ì»òÑÝËã²½Ö裮
A£®Èçͼ£¬Ô²OµÄÖ±¾¶AB=6£¬CΪԲÖÜÉÏÒ»µã£¬BC=3£¬¹ýC×÷Ô²µÄÇÐÏßl£¬¹ýA×÷lµÄ´¹ÏßAD£¬AD·Ö±ðÓëÖ±Ïßl¡¢Ô²½»ÓÚµãD¡¢E£®Çó¡ÏDACµÄ¶ÈÊýÓëÏ߶ÎAEµÄ³¤£®
B£®ÒÑÖª¶þ½×¾ØÕóA=
2a
b0
ÊôÓÚÌØÕ÷Öµ-1µÄÒ»¸öÌØÕ÷ÏòÁ¿Îª
1
-3
£¬Çó¾ØÕóAµÄÄæ¾ØÕó£®

C£®ÒÑÖª¼«×ø±êϵµÄ¼«µãÔÚÖ±½Ç×ø±êϵµÄÔ­µã£¬¼«ÖáÓëxÖáµÄÕý°ëÖáÖغϣ¬ÇúÏßCµÄ¼«×ø±ê·½³Ì¦Ñ2cos2¦È+3¦Ñ2sin2¦È=3£¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ
x=-
3
t
y=1+t
£¨tΪ²ÎÊý£¬t¡Ê{R}£©£®ÊÔÇóÇúÏßCÉϵãMµ½Ö±ÏßlµÄ¾àÀëµÄ×î´óÖµ£®
D£®£¨1£©ÉèxÊÇÕýÊý£¬ÇóÖ¤£º£¨1+x£©£¨1+x2£©£¨1+x3£©¡Ý8x3£»
£¨2£©Èôx¡ÊR£¬²»µÈʽ£¨1+x£©£¨1+x2£©£¨1+x3£©¡Ý8x3ÊÇ·ñÈÔÈ»³ÉÁ¢£¿Èç¹ûÈÔ³ÉÁ¢£¬Çë¸ø³öÖ¤Ã÷£»Èç¹û²»³ÉÁ¢£¬Çë¾Ù³öÒ»¸öʹËü²»³ÉÁ¢µÄxµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Ñ¡×öÌâÔÚA¡¢B¡¢C¡¢DËÄСÌâÖÐÖ»ÄÜÑ¡×ö2Ì⣬ÿСÌâ10·Ö£¬¹²¼Æ20·Ö£®
AÑ¡ÐÞ4-1£º¼¸ºÎÖ¤Ã÷Ñ¡½²
Èçͼ£¬ÑÓ³¤¡ÑOµÄ°ë¾¶OAµ½B£¬Ê¹OA=AB£¬DEÊÇÔ²µÄÒ»ÌõÇÐÏߣ¬EÊÇÇе㣬¹ýµãB×÷DEµÄ´¹Ïߣ¬´¹×ãΪµãC£®
ÇóÖ¤£º¡ÏACB=
1
3
¡ÏOAC£®
BÑ¡ÐÞ4-2£º¾ØÕóÓë±ä»»
ÒÑÖª¾ØÕóA=
.
11
21
.
£¬ÏòÁ¿
¦Â
=
1
2
£®ÇóÏòÁ¿
a
£¬Ê¹µÃA2
a
=
¦Â
£®
CÑ¡ÐÞ4-3£º×ø±êϵÓë²ÎÊý·½³Ì
ÒÑÖªÍÖÔ²CµÄ¼«×ø±ê·½³ÌΪ¦Ñ2=
a
3cos2¦È+4sin2¦È
£¬½¹¾àΪ2£¬ÇóʵÊýaµÄÖµ£®
DÑ¡ÐÞ4-4£º²»µÈʽѡ½²
ÒÑÖªº¯Êýf£¨x£©=£¨x-a£©2+£¨x-b£©2+£¨x-c£©2+
(a+b+c)2
3
£¨a£¬b£®cΪʵÊý£©µÄ×îСֵΪm£¬Èôa-b+2c=3£¬ÇómµÄ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨Ñ¡×öÌ⣩ÔÚA£¬B£¬C£¬DËÄСÌâÖÐÖ»ÄÜÑ¡×ö2Ì⣬ÿСÌâ10·Ö£¬¹²¼Æ20·Ö£®ÇëÔÚ´ðÌ⿨ָ¶¨ÇøÓòÄÚ×÷´ð£¬½â´ðʱӦд³öÎÄ×Ö˵Ã÷¡¢Ö¤Ã÷¹ý³Ì»òÑÝËã²½Ö裮
A£®Ñ¡ÐÞ4-1£º¼¸ºÎÖ¤Ã÷Ñ¡½²
Èçͼ£¬¡ÑOµÄ°ë¾¶OB´¹Ö±ÓÚÖ±¾¶AC£¬MΪAOÉÏÒ»µã£¬BMµÄÑÓ³¤Ïß½»¡ÑOÓÚN£¬¹ý
NµãµÄÇÐÏß½»CAµÄÑÓ³¤ÏßÓÚP£®
£¨1£©ÇóÖ¤£ºPM2=PA•PC£»
£¨2£©Èô¡ÑOµÄ°ë¾¶Îª2
3
£¬OA=
3
OM£¬ÇóMNµÄ³¤£®
B£®Ñ¡ÐÞ4-2£º¾ØÕóÓë±ä»»
ÇúÏßx2+4xy+2y2=1ÔÚ¶þ½×¾ØÕóM=
.
1a
b1
.
µÄ×÷ÓÃϱ任ΪÇúÏßx2-2y2=1£¬ÇóʵÊýa£¬bµÄÖµ£»
C£®Ñ¡ÐÞ4-4£º×ø±êϵÓë²ÎÊý·½³Ì
ÔÚ¼«×ø±êϵÖУ¬Ô²CµÄ¼«×ø±ê·½³ÌΪ¦Ñ=
2
cos(¦È+
¦Ð
4
)
£¬ÒÔ¼«µãΪԭµã£¬¼«ÖáΪxÖáµÄÕý°ëÖὨÁ¢Æ½ÃæÖ±½Ç×ø±êϵ£¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ
x=1+
4
5
y=-1-
3
5
£¨tΪ²ÎÊý£©£¬ÇóÖ±Ïßl±»Ô²CËù½ØµÃµÄÏÒ³¤£®
D£®Ñ¡ÐÞ4-5£º²»µÈʽѡ½²
Éèa£¬b£¬c¾ùΪÕýʵÊý£®
£¨1£©Èôa+b+c=1£¬Çóa2+b2+c2µÄ×îСֵ£»
£¨2£©ÇóÖ¤£º
1
2a
+
1
2b
+
1
2c
¡Ý
1
b+c
+
1
c+a
+
1
a+b
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Ñ¡×öÌ⣺ÔÚA¡¢B¡¢C¡¢DËÄСÌâÖÐÖ»ÄÜÑ¡×ö2Ì⣬ÿСÌâ10·Ö£¬¹²20·Ö£®½â´ðӦд³öÎÄ×Ö˵Ã÷¡¢Ö¤Ã÷¹ý³Ì»òÑÝËã²½Ö裮
A£®Ñ¡ÐÞ4-1£º¼¸ºÎÖ¤Ã÷Ñ¡½²
Èçͼ£¬PAÇСÑOÓÚµãA£¬DΪPAµÄÖе㣬¹ýµãDÒý¸îÏß½»¡ÑOÓÚB¡¢CÁ½µã£®ÇóÖ¤£º¡ÏDPB=¡ÏDCP£®
B£®Ñ¡ÐÞ4-2£º¾ØÕóÓë±ä»»
ÉèM=
.
10
02
.
£¬N=
.
1
2
0
01
.
£¬ÊÔÇóÇúÏßy=sinxÔÚ¾ØÕóMN±ä»»ÏµÄÇúÏß·½³Ì£®
C£®Ñ¡ÐÞ4-4£º×ø±êϵÓë²ÎÊý·½³Ì
ÔÚ¼«×ø±êϵÖУ¬Ô²CµÄ¼«×ø±ê·½³ÌΪ¦Ñ=
2
cos(¦È+
¦Ð
4
)
£¬ÒÔ¼«µãΪԭµã£¬¼«ÖáΪxÖáµÄÕý°ëÖὨÁ¢Æ½ÃæÖ±½Ç×ø±êϵ£¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ
x=1+
4
5
t
y=-1-
3
5
t
£¨tΪ²ÎÊý£©£¬ÇóÖ±Ïßl±»Ô²CËù½ØµÃµÄÏÒ³¤£®
D£®Ñ¡ÐÞ4-5£º²»µÈʽѡ½²
½â²»µÈʽ£º|2x+1|-|x-4|£¼2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

 Ñ¡×öÌ⣨ÔÚA¡¢B¡¢C¡¢DËÄСÌâÖÐÖ»ÄÜÑ¡×öÁ½Ì⣬²¢½«Ñ¡×÷±ê¼ÇÓÃ2BǦ±ÊÍ¿ºÚ£¬Ã¿Ð¡Ìâ10·Ö£¬¹²20·Ö£¬ÇëÔÚ´ðÌâÖ¸¶¨ÇøÓòÄÚ×÷´ð£¬½â´ðʱӦд³öÎÄ×Ö˵Ã÷¡¢Ö¤Ã÷¹ý³Ì»òÑÝËã²½Ö裩£®
A¡¢£¨Ñ¡ÐÞ4-1£º¼¸ºÎÖ¤Ã÷Ñ¡½²£©
Èçͼ£¬BDΪ¡ÑOµÄÖ±¾¶£¬AB=AC£¬AD½»BCÓÚE£¬ÇóÖ¤£ºAB2=AE•AD
B¡¢£¨Ñ¡ÐÞ4-2£º¾ØÐÎÓë±ä»»£©
ÒÑÖªa£¬bʵÊý£¬Èç¹û¾ØÕóM=
1a
b2
Ëù¶ÔÓ¦µÄ±ä»»½«Ö±Ïß3x-y=1±ä»»³Éx+2y=1£¬Çóa£¬bµÄÖµ£®
C¡¢£¨Ñ¡ÐÞ4-4£¬£º×ø±êϵÓë²ÎÊý·½³Ì£©
ÉèM¡¢N·Ö±ðÊÇÇúÏߦÑ+2sin¦È=0ºÍ¦Ñsin£¨¦È+
¦Ð
4
£©=
2
2
ÉϵĶ¯µã£¬ÅжÏÁ½ÇúÏßµÄλÖùØϵ²¢ÇóM¡¢N¼äµÄ×îС¾àÀ룮
D¡¢£¨Ñ¡ÐÞ4-5£º²»µÈʽѡ½²£©
Éèa£¬b£¬cÊDz»ÍêÈ«ÏàµÈµÄÕýÊý£¬ÇóÖ¤£ºa+b+c£¾
ab
+
bc
+
ca
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸