精英家教网 > 高中数学 > 题目详情
抛物线的顶点在原点,焦点在x轴的正半轴上,直线x+y-1=0与抛物线相交于A、B两点,且|AB|=
8
6
11

(1)求抛物线的方程;
(2)在x轴上是否存在一点C,使△ABC为正三角形?若存在,求出C点的坐标;若不存在,请说明理由.
(1)设所求抛物线的方程为y2=2px(p>0),
y2=2px
x+y-1=0
消去y,
得x2-2(1+p)x+1=0.
设A(x1,y1),B(x2,y2),
则x1+x2=2(1+p),
x1•x2=1.∵|AB|=
8
6
11

(1+k2)[(x1+x2)2-4x1x2]
=
8
6
11

∴121p2+242p-48=0,
∴p=
2
11
或-
24
11
(舍).
∴抛物线的方程为y2=
4
11
x.

(2)设AB的中点为D,则D(
13
11
,-
2
11
)

假设x轴上存在满足条件的点C(x0,0),∵△ABC为正三角形,
∴CD⊥AB,∴x0=
15
11

∴C(
15
11
,0
),∴|CD|=
2
2
11

又∵|CD|=
3
2
|AB|=
12
2
11

故矛盾,∴x轴上不存在点C,使△ABC为正三角形.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

过椭圆
x2
6
+
y2
5
=1
内的一点P(2,-1)的弦,恰好被点P平分,则这条弦所在直线方程(  )
A.y=
5
3
x-
5
6
B.y=
5
3
x-
13
3
C.y=-
5
3
x+
5
6
D.y=
5
3
x+
11
6

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(B题)已知椭圆C的中心在坐标原点,焦点在x轴上,长轴长为2
3
,离心率为
3
3

(1)求椭圆C的方程;
(2)设点A(-1,1),过原点O的直线交椭圆于点B,C,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线y2=-x与直线y=k(x+1)相交于A、B两点.
(1)求证:OA⊥OB;
(2)当△OAB的面积等于
10
时,求k的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)
的离心率e=
2
且点P(3,
7
)
在双曲线C上.
(1)求双曲线C的方程;
(2)记O为坐标原点,过点Q(0,2)的直线l与双曲线C相交于不同的两点E、F,若△OEF的面积为2
2
,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C1
x2
4
+
y2
3
=1
,抛物线C2:(y-m)2=2px(p>0),且C1、C2的公共弦AB过椭圆C1的右焦点.
(Ⅰ)当AB⊥x轴时,求m、p的值,并判断抛物线C2的焦点是否在直线AB上;
(Ⅱ)是否存在m、p的值,使抛物线C2的焦点恰在直线AB上?若存在,求出符合条件的m、p的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
3
2
,与双曲线x2-y2=1的渐近线有四个交点,以这四个交点为顶点的四边形的面积为16,则椭圆C的方程为(  )
A.
x2
8
+
y2
2
=1
B.
x2
12
+
y2
6
=1
C.
x2
16
+
y2
4
=1
D.
x2
20
+
y2
5
=1

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)

(1)若椭圆的长轴长为4,离心率为
3
2
,求椭圆的标准方程;
(2)在(1)的条件下,设过定点M(0,2)的直线l与椭圆C交于不同的两点A、B,且∠AOB为锐角(其中O为坐标原点),求直线l的斜率k的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图所示,是等腰三角形,是底边延长线上一点,
,则腰长=        .

查看答案和解析>>

同步练习册答案