精英家教网 > 高中数学 > 题目详情
在下列3个结论中,正确的有(  )
①x2>4是x3<-8的必要不充分条件;
②在△ABC中,AB2+AC2=BC2是△ABC为直角三角形的充要条件;
③若a,b∈R,则“a2+b2≠0”是“a,b不全为0”的充要条件.
分析:利用充分条件,必要条件的定义分别判断.
解答:解:对于结论①,由x3<-8⇒x<-2⇒x2>4,但是x2>4⇒x>2或x<-2⇒x3>8或x3<-8,不一定有x3<-8,故①正确;
对于结论②,当B=90°或C=90°时不能推出AB2+AC2=BC2,故②错;
对于结论③,由a2+b2≠0⇒a,b不全为0,反之,由a,b不全为0⇒a2+b2≠0,故③正确.
故选C.
点评:本题主要考查充分条件和必要条件的判断,利用充分条件和必要条件的定义是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在数列{an}中,a1=a2=1,an+1+(n-1)an-1=(n+1)an,n=2,3,4,….关于数列{an}给出下列四个结论:
①数列{an+1-nan}是常数列;                   
②对于任意正整数n,有an≤an+1成立;
③数列{an}中的任意连续3项都不会成等比数列;   
n
k=1
ak
ak+2
=
n
n+1

其中全部正确结论的序号是
①②③④
①②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正四棱锥S-ABCD中,E,M,N分别是BC,CD,SC的中点,动点P在线段MN上运动时,下列四个结论中恒成立的个数为(  )
(1)EP⊥AC; 
(2)EP∥BD;
(3)EP∥面SBD;
(4)EP⊥面SAC.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于正整数n,数列a1,a2,…,ak在满足下列条件下称为关于(1,2,3,…,n)的万能数列:自然数1,2,3,…,n的任意一个排列都能从数列a1,a2,…,ak中去掉一些项后得到.
(1)构造一个有n2项的关于(1,2,3,…,n)的万能数列的例子,并证明;
(2)构造一个有n2-n+1个项的关于(1,2,3,…,n)的万能数列的例子并证明;
(3)判断数列A:是否是关于(1,2,3,…,n)的万能数列,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年浙江省宁波市高一(下)期末数学试卷(解析版) 题型:选择题

如图,在正四棱锥S-ABCD中,E,M,N分别是BC,CD,SC的中点,动点P在线段MN上运动时,下列四个结论中恒成立的个数为( )
(1)EP⊥AC; 
(2)EP∥BD;
(3)EP∥面SBD;
(4)EP⊥面SAC.

A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

科目:高中数学 来源:2010-2011学年北京市西城区(北区)高二(下)期末数学试卷(文科)(解析版) 题型:填空题

在数列{an}中,a1=a2=1,an+1+(n-1)an-1=(n+1)an,n=2,3,4,….关于数列{an}给出下列四个结论:
①数列{an+1-nan}是常数列;                   
②对于任意正整数n,有an≤an+1成立;
③数列{an}中的任意连续3项都不会成等比数列;   

其中全部正确结论的序号是   

查看答案和解析>>

同步练习册答案