精英家教网 > 高中数学 > 题目详情

【题目】关于x的方程22x﹣(m﹣1)2x+2=0在x∈[0,2]时有唯一解,求m取值范围.

【答案】解:令2x=t,则t∈[1,4], ∴方程t2﹣(m﹣1)t+2=0在[1,4]上有唯一解.
①若△=(m﹣1)2﹣8=0,即m=1±2 时,
若m=1+2 ,则t= ,符合题意,
若m=1﹣2 ,则t=﹣ ,不符合题意.
②若△=(m﹣1)2﹣8>0,即m<1﹣2 或m>1+2 时,
若t=1是方程的解,由根与系数的关系可知t=2也是方程的解,与方程在[1,4]上有唯一解矛盾;
若t=4是方程的解,由根与系数的关系可知t= 也是方程的解,符合题意;
此时m﹣1=4+ ,∴m=
若方程的解在(1,4)上,根据零点的存在性定理可知(4﹣m)(22﹣4m)<0,
解得4<m<
综上,m的取值范围是(4, ]∪{1+2 }
【解析】令2x=t,在方程t2﹣(m﹣1)t+2=0在[1,4]上有唯一解,对判别式和区间端点值进行讨论,利用二次函数的性质和零点的存在性定理得出a的范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若直线l1:y=x,l2:y=x+2与圆C:x2+y2﹣2mx﹣2ny=0的四个交点把圆C分成的四条弧长相等,则m=(
A.0或1
B.0或﹣1
C.1或﹣1
D.0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列是公差为正数的等差数列,其前项和为,且

(1)求数列的通项公式;

(2)数列满足 .①求数列的通项公式;②是否存在正整数 ),使得 成等差数列?若存在,求出 的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=2sin4x+2cos4x+cos22x﹣3.
(1)求函数f(x)的最小正周期.
(2)求函数f(x)在闭区间[ ]上的最小值并求当f(x)取最小值时,x的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于函数f(x)=4sin(2x )(x∈R),有下列命题: ①y=f(x)的表达式可改写为y=4cos(2x﹣ );
②y=f(x)是以2π为最小正周期的周期函数;
③y=f(x)的图象关于点 对称;
④y=f(x)的图象关于直线x=﹣ 对称.
其中正确的命题的序号是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2016622 日,“国际教育信息化大会在山东青岛开幕.为了解哪些人更关注“国际教育信息化大会某机构随机抽取了年龄在15-75岁之间的100人进行调查,经统计“青少年”与“中老年”的人数之比为9: 11.

1根据已知条件完成下面的列联表,并判断能否有的把握认为“中老年比“青少年”更加关注“国际教育信息化大会

2现从抽取的青少年中采用分层抽样的办法选取9人进行问卷调查.在这9人中再选取3人进行面对面询问,记选取的3人中关注“国际教育信息化大会”的人数为的分布列及数学期望.

:参考公式其中.

临界值表:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆的左、右顶点分别为,上、下顶点分别为两个焦点分别为 四边形的面积是四边形的面积的2.

1求椭圆的方程;

2过椭圆的右焦点且垂直于轴的直线交椭圆两点 是椭圆上位于直线两侧的两点.若直线过点,且求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆的中心在原点,焦点在x轴上,离心率 .已知点 到这个椭圆上的点的最远距离为 ,求这个椭圆方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,梯形ABCD中,AD∥BC,AD⊥AB,AD=1,BC=2,AB=3,P是AB上的一个动点,∠CPB=α,∠DPA=β. (Ⅰ)当 最小时,求tan∠DPC的值;
(Ⅱ)当∠DPC=β时,求 的值.

查看答案和解析>>

同步练习册答案