精英家教网 > 高中数学 > 题目详情

【题目】如图,在直三棱柱 中,DA1B1的中点,ABBC2,,则异面直线BDAC所成的角为(  )

A. 30°B. 45°C. 60°D. 90°

【答案】C

【解析】

的中点E,连接BEDE,则ACA1C1DEBDE即为异面直线BDAC所成的角,接下来根据中点的性质、中位线的性质以及勾股定理可得BDDEBE的关系,由此可得BED的形状,此时即可解答本题。

如图,取B1C1的中点E,连接BEDE,则ACA1C1DE,则∠BDE即为异面直线BDAC所成的角.

根据点D和点E分别为A1B1的中点和B1 C1的中点.利用勾股定理可得BD=BE=。根据三角形中位线的性质可得DE=

∴△BED为等边三角形,∴∠BDE=60°.故选C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】平行四边形中,,沿折起,使二面角是大小为锐角的二面角,设在平面上的射影为

(1)当为何值时,三棱锥的体积最大?最大值为多少?

(2)当时,求的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在正方体

1)求AC所成角的大小;

2)若EF分别为ABAD的中点,求EF与平面所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,底面ABCMN分别为PBPC的中点.

1)求证:平面ABC

2)求证:平面平面PAC

3)若,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义:若两个椭圆的离心率相等,则称两个椭圆是“相似”的,如图,椭圆与椭圆是相似的两个椭圆,并且相交于上下两个顶点,椭圆的长轴长是4,椭圆,短轴长是1,点分别是椭圆的左焦点与右焦点.

(1)求椭圆的方程;

(2)过的直线交椭圆于点,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,P是四边形ABCD所在平面外的一点,四边形ABCDDAB60°且边长为a的菱形侧面PAD为正三角形,其所在平面垂直于底面ABCD

1GAD边的中点,求证:BG平面PAD

2求证:ADPB

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P-ABCD中,PA⊥底面ABCDAD∥BCABADAC=3,PABC=4,M为线段AD上一点,AM=2MDNPC的中点.

(Ⅰ)证明MN∥平面PAB

(Ⅱ)求四面体N-BCM的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正四棱锥S-ABCD中,O为顶点在底面内的投影,P为侧棱SD的中点,且SO=OD,则直线BC与平面PAC的夹角是

A. 30°B. 45°C. 60°D. 90°

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校调查了20个班中有网上购物经历的人数,得到了如图所示的茎叶图,以为分组,作出这组数的频率分布直方图,并说明频率分布直方图与茎叶图之间的关系.

0

1

2

3

7 3

7 6 4 4 3 0

7 5 5 4 3 2 0

8 5 4 3 0

查看答案和解析>>

同步练习册答案