精英家教网 > 高中数学 > 题目详情

【题目】已知数列是公差为正数的等差数列,其前项和为

(1)求数列的通项公式.

(2)设数列满足

①求数列的通项公式;

②是否存在正整数,使得成等差数列?若存在,求出的值;若不存在,请说明理由.

【答案】;(2)①;②见解析

【解析】

(1)直接由列关于首项和公差的方程组求解方程组得首项和公差代入等差数列的通项公式得结论;(2)①把数列的通项公式代入 ,然后裂项累加后即可求得数列的通项公式②假设存在正整数,使得成等差数列,由此列关于的方程求解得结论.

⑴由

所以

(2)①因为

...

各式相加得,所以

符合上式,

所以

②存在正整数,使得成等差数列,

,即

化解整理可得

因为

所以,所以,得

所以

时,,不合题意,舍去

故存在

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在某次试验中,两个试验数据x,y的统计结果如下面的表格1所示.

x

1

2

3

4

5

y

2

3

4

4

5

表格1

(1)在给出的坐标系中画出数据x,y的散点图.

(2)补全表格2,根据表格2中的数据和公式求下列问题.

①求出y关于x的回归直线方程中的.

②估计当x=10时,的值是多少?

表格2

序号

x

y

x2

xy

1

1

2

1

2

2

2

3

4

6

3

3

4

9

12

4

4

4

16

16

5

5

5

25

25

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动圆过定点P(4,0),且在y轴上截得的弦MN的长为8.

(1)求动圆圆心C的轨迹方程;

(2)过点(2,0)的直线l与动圆圆心C的轨迹交于A,B两点,求证:是一个定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲,乙两人进行围棋比赛,共比赛2n(n∈N+)局,根据以往比赛胜负的情况知道,每局甲胜的概率和乙胜的概率均为 .如果某人获胜的局数多于另一人,则此人赢得比赛.记甲赢得比赛的概率为P(n).
(1)求P(2)与P(3)的值;
(2)试比较P(n)与P(n+1)的大小,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,已知椭圆 =1(a>b>0)的离心率为 ,长轴长为4,过椭圆的左顶点A作直线l,分别交椭圆和圆x2+y2=a2于相异两点P,Q.

(1)若直线l的斜率为 ,求 的值;
(2)若 ,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an},{bn}均为各项都不相等的数列,Sn为{an}的前n项和,an+1bn=Sn+1(n∈N).
(1)若a1=1,bn= ,求a4的值;
(2)若{an}是公比为q的等比数列,求证:存在实数λ,使得{bn+λ}为等比数列;
(3)若{an}的各项都不为零,{bn}是公差为d的等差数列,求证:a2 , a3 , …,an…成等差数列的充要条件是d=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲,乙两人进行围棋比赛,共比赛2n(n∈N+)局,根据以往比赛胜负的情况知道,每局甲胜的概率和乙胜的概率均为 .如果某人获胜的局数多于另一人,则此人赢得比赛.记甲赢得比赛的概率为P(n).
(1)求P(2)与P(3)的值;
(2)试比较P(n)与P(n+1)的大小,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在等腰梯形ABCD中,AB=2,CD=4,BC= ,点E,F分别为AD,BC的中点.如果对于常数λ,在ABCD的四条边上,有且只有8个不同的点P使得 =λ成立,那么实数λ的取值范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,以原点O为顶点,以y轴为对称轴的抛物线E的焦点为F(0,1),点M是直线l:y=m(m<0)上任意一点,过点M引抛物线E的两条切线分别交x轴于点S,T,切点分别为B,A.

(1)求抛物线E的方程;

(2)求证:点S,T在以FM为直径的圆上.

查看答案和解析>>

同步练习册答案