精英家教网 > 高中数学 > 题目详情
已知椭圆M:(a>b>0)的离心率为,且椭圆上一点与椭圆的两个焦点构成的三角形的周长为6+4
(Ⅰ)求椭圆M的方程;
(Ⅱ)设直线l:x=ky+m与椭圆M交手A,B两点,若以AB为直径的圆经过椭圆的右顶点C,求△ABC面积的最大值.
(Ⅰ)(Ⅱ)时,取得最大值为.
(1)由题意可知2a+2c和e的值,所以可以求出a,b,c进而确定椭圆方程.
(2)以AB为直径的圆过右顶点C,实质是,然后用坐标表示出来,再通过直线l的方程与椭圆方程联立,借助韦达定理和判断式把△ABC面积表示成关于k的函数,然后利用函数的方法求最值.
(Ⅰ)因为椭圆上一点和它的两个焦点构成的三角形周长为,∴, 又椭圆的离心率为,即,所以
.  ………… 3分∴,椭圆的方程为.……4分
(Ⅱ)由直线的方程.联立 消去,………… 5分     
,则有. ① ……… 6分
因为以为直径的圆过点,所以 .由 ,得 .…………… 7分
代入上式,得 .
将 ① 代入上式,解得 (舍). ……… 8分
所以,记直线轴交点为,则点坐标为
所以
,则.
所以当时,取得最大值为
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

已知椭圆(a>b>0)的左右焦点分别为F1,F2,P是椭圆上一点。PF1F2为以F2P为底边的等腰三角形,当60°<PF1F2120°,则该椭圆的离心率的取值范围是    

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知两点,曲线上的动点满足,直线与曲线交于另一点
(Ⅰ)求曲线的方程;
(Ⅱ)设,若,求直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的左、右焦点分别为F1和F2 ,以F1、F2为直径的圆经过点M(0,b).(1)求椭圆的方程;(2)设直线l与椭圆相交于A,B两点,且.求证:直线l在y轴上的截距为定值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

.(本题满分14分)
已知圆M定点,点为圆上的动点,点上,点上,且满足
(Ⅰ) 求点G的轨迹C的方程;
(Ⅱ) 过点(2,0)作直线l,与曲线C交于A,B两点,O是坐标原点,设,是否存在这样的直线l,使四边形OASB的对角线相等(即|OS|=|AB|)?若存在,求出直线l的方程;若不存在,试说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知在△ABC中,B、C坐标分别为B (0,-4),C (0,4),且,顶点A
的轨迹方程是(      )
(A)x≠0)                (B)x≠0)   
(C)x≠0)                 (D)x≠0)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在△中,边长为边上的中线长之和等于.若以边中点为原点,边所在直线为轴建立直角坐标系,则△的重心的轨迹方程为:                   

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆:的右焦点与抛物线的焦点相同,且的离心率,又为椭圆的左右顶点,其上任一点(异于).
(Ⅰ)求椭圆的方程;
(Ⅱ)若直线交直线于点,过作直线的垂线交轴于点,求的坐标;
(Ⅲ)求点在直线上射影的轨迹方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知双曲线)的一条渐近线方程为,则该双曲
线的离心率_________.

查看答案和解析>>

同步练习册答案