精英家教网 > 高中数学 > 题目详情

【题目】如图,某小区中央广场由两部分组成,一部分是边长为的正方形,另一部分是以为直径的半圆,其圆心为.规划修建的条直道 将广场分割为个区域:Ⅰ、Ⅲ、Ⅴ为绿化区域(图中阴影部分),Ⅱ、Ⅳ、Ⅵ为休闲区域,其中点在半圆弧上, 分别与 相交于点 .(道路宽度忽略不计)

(1)若经过圆心,求点的距离;

(2)设 .

①试用表示的长度;

②当为何值时,绿化区域面积之和最大.

【答案】(1)(2)①最小值为②当时,绿化区域Ⅰ、Ⅲ、Ⅴ的面积之和最大

【解析】试题分析:(1)先建立直角坐标系,联立直线OB方程与圆方程解得P点纵坐标,即得点的距离;(2)①先求点的距离为,再根据三角形相似得的长度;②根据三角形面积公式求三个三角形面积,再用总面积相减得绿化区域面积,最后利用导数求函数最值

试题解析:以所在直线为轴,以线段的中垂线为轴建立平面直角坐标系.

(1)直线的方程为

半圆的方程为

.

所以,点的距离为.

(2)①由题意,得.

直线的方程为

,得

.

直线的方程为

,得 .

所以, 的长度为

.

②区域Ⅳ、Ⅵ的面积之和为

区域Ⅱ的面积为

所以 .

,则

.

.

当且仅当,即时“”成立.

所以,休闲区域Ⅱ、Ⅳ、Ⅵ的面积的最小值为.

答:当时,绿化区域Ⅰ、Ⅲ、Ⅴ的面积之和最大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设椭圆的离心率为,左顶点到直线的距离为

(Ⅰ)求椭圆C的方程;

(Ⅱ)设直线与椭圆C相交于AB两点,若以AB为直径的圆经过坐标原点O,试探究:点O到直线AB的距离是否为定值?若是,求出这个定值;否则,请说明理由;

(Ⅲ)在(Ⅱ)的条件下,试求△AOB面积S的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国古代数学名著《九章算术》中,将底面为直角三角形且侧棱垂直于底面的三棱柱称之为堑堵;将底面为矩形且一侧棱垂直于底面的四棱锥称之为阳马;将四个面均为直角三角形的四面体称之为鳖臑[biē nào].某学校科学小组为了节约材料,拟依托校园内垂直的两面墙和地面搭建一个堑堵形的封闭的实验室,是边长为2的正方形.

(1)若上,四面体是否为鳖臑,若是,写出其每个面的直角:若不是,请说明理由;

2)当阳马的体积最大时,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,底面半径为,母线长为的圆柱的轴截面是四边形,线段上的两动点 满足.点在底面圆上,且 为线段的中点.

(Ⅰ)求证: 平面

(Ⅱ)四棱锥的体积是否为定值,若是,请求出该定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(2x-x2)ex-1.

(1)求函数f(x)的单调区间;

(2)若对任意x≥1,都有f(x)-mx-1+m≤0恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知fx)是定义在R上的函数,f′(x)是fx)的导函数,且满足f′(x)+fx)<0,设gx)=exfx),若不等式g(1+t2)<gmt)对于任意的实数t恒成立,则实数m的取值范围是( )

A. (﹣∞,0)∪(4,+∞) B. (0,1)

C. (﹣∞,﹣2)∪(2,+∞) D. (﹣2,2)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是两条不同直线,是两个不同平面,则下列命题正确的是 ( )

A. 垂直于同一平面,则平行

B. ,则

C. 不平行,则在内不存在与平行的直线

D. 不平行,则不可能垂直于同一平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知椭圆的离心率为,左焦点,直线与椭圆交于两点, 为椭圆上异于的点.

1)求椭圆的方程;

2)若,以为直径的圆点,求圆的标准方程;

3)设直线轴分别交于,证明: 为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】先后2次抛掷一次骰子,将得到的点数分别记为

1)求直线与圆相切的概率;

2)将4的值分别作为三条线段的长,求这三条线段能围成等腰三角形(含等边三角形)的概率.

查看答案和解析>>

同步练习册答案