精英家教网 > 高中数学 > 题目详情
3.已知M={x|x>1},N={x|x>a}.
(1)若M⊆N,则a的取值范围是a≤1;
(2)若N?M,则a的取值范围是a>1.

分析 利用集合的包含关系,即可求出a的取值范围.

解答 解:M={x|x>1},N={x|x>a}.
(1)∵M⊆N,∴a≤1;
(2)∵N?M,∴a>1.
故答案为:a≤1;a>1.

点评 本题考查求a的取值范围,考查集合的包含关系,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.(1)解关于x的不等式:x2-(a2+2a+1)x+2a(a2+1)<0.
(2)若(1)中的不等式的解包含满足2<x<5的所有实数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知集合B={(x,y)|x2-xy-2y2=0},C={(x,y)|x-2y=0},D={(x,y)|x+y=0}.判断集合B,C,D之间的关系.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.求出满足2∈(-2,x+1,x2+x-4)的所有实数x组成的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知数列{an}中,a1=1,an+1=$\frac{5{a}_{n}}{5+{a}_{n}}$(n∈N*).
(1)求a2.a3
(2)求证:数列{$\frac{1}{{a}_{n}}$}成等差数列,并求数列{an}的通项公式;
(3)设Tn是{an}的前n项和,T2n>Tn+a对任意的n∈N*恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.计算:(-3$\frac{3}{8}$)${\;}^{-\frac{2}{3}}$+(0.002)${\;}^{-\frac{1}{2}}$-10($\sqrt{5}$-2)-1+($\sqrt{2}$-$\sqrt{3}$)0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.解方程:(x2+x)(x2+x-2)=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.求所有的角α,使得集合{sinα,sin2α,sin3α}={cosα,cos2α,cos3α}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在△ABC中,∠ABC=$\frac{π}{4}$,AB=$\sqrt{3}$,BC=3.求sin∠BAC的值.

查看答案和解析>>

同步练习册答案