精英家教网 > 高中数学 > 题目详情
已知且函数y=f(x)-x恰有3个不同的零点,则实数a的取值范围是( )
A.(0,+∞)
B.[-1,0)
C.[-1,+∞)
D.[-2,+∞)
【答案】分析:先根据当x≥0时,f(x)=f(x-1),可得当x≥0时,f(x)在[-1,0)重复的周期函数,再根据x∈[-1,0)时,y=a-x2-2x=1+a-(x+1)2,对称轴x=-1,顶点(-1,1+a),进而可进行分类:(1)如果a<-1,函数y=f(x)-x至多有2个不同的零点;(2)如果a=-1,则y有一个零点在区间(-1,0),有一个零点在(-∞,-1),一个零点是原点;(3)如果a>-1,则有一个零点在(-∞,-1),y右边有两个零点,故可求实数a的取值范围.
解答:解:因为当x≥0的时候,f(x)=f(x-1),所以所有大于等于0的x代入得到的f(x)相当于在[-1,0)重复的周期函数
x∈[-1,0)时,y=a-x2-2x=1+a-(x+1)2,对称轴x=-1,顶点(-1,1+a)
(1)如果a<-1,函数y=f(x)-x至多有2个不同的零点;
(2)如果a=-1,则y有一个零点在区间(-1,0),有一个零点在(-∞,-1),一个零点是原点;
(3)如果a>-1,则有一个零点在(-∞,-1),y右边有两个零点,
故实数a的取值范围是[-1,+∞)
故选C.
点评:本题重点考查函数的零点与方程根的关系,考查函数的周期性,有一定的难度.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知奇函数y=f(x)在区间(-∞,+∞)上是单调减函数.α,β,γ∈R,且α+β>0,β+γ>0,γ+α>0,则f(α)+f(β)+f(γ)的值(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:函数y=f(x)是定义在[-2,2]上的偶函数,而且在[0,2]上是增函数,且f(x)满足不等式f(1-m)<f(m),求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:函数y=f(x),x∈R,满足f(1)=2,f(x+y)=f(x)*f(y),且f(x)是增函数,
(1)证明:f(0)=1;
(2)若f(2x)*f(x2-1)≥4成立,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

已知数学公式数学公式且函数y=f(x)-x恰有3个不同的零点,则实数a的取值范围是


  1. A.
    (0,+∞)
  2. B.
    [-1,0)
  3. C.
    [-1,+∞)
  4. D.
    [-2,+∞)

查看答案和解析>>

同步练习册答案