精英家教网 > 高中数学 > 题目详情
13.如图1,平行四边形ABCD中,AB=2,BC=$\sqrt{2}$,∠BAD=45°,O为CD中点,将△BOC沿OB边翻折,折成直二面角A-BO-C,E为AC中点,
(Ⅰ)求证:DE∥平面BOC;
(Ⅱ)求直线AC与平面BCD所成夹角的正弦值.

分析 (Ⅰ)连结BD,由余弦定理得BD=$\sqrt{2}$,从而∠ADB=90,进而BO⊥OC,BO⊥OD,取BC中点F,连结EF,OF,得四边形EFOD为平行四边形,从而DE∥OF,由此能证明DE∥平面BOC.
(Ⅱ)由已知推导出△BCD为边长为$\sqrt{2}$的等边三角形.设点A到平面BCD的距离为d,直线AC与平面BCD所成夹角为θ,由VA-BCD=VD-ABC,求出d=$\frac{2\sqrt{3}}{3}$,由此能求出AC与平面BCD所成夹角的正弦值.

解答 证明:(Ⅰ)连结BD,∵平行四边形ABCD中,AB=2,BC=$\sqrt{2}$,∠BAD=45°,
∴由余弦定理BD2=AD2+AB2-2AD•AB•cos45°=2+4-2×$\sqrt{2}×2×\frac{\sqrt{2}}{2}$=2,∴BD=$\sqrt{2}$,
∴AD2+BD2=AB2,∠ADB=90,
从而△ABD与△BCD均为等腰直角三角形,
∴BO⊥OC,BO⊥OD,
又平面BOC⊥平面ABOD,∴OC⊥平面ABCD,
取BC中点F,连结EF,OF,EF为△ABC的中位线,
∴EF$\underset{∥}{=}$$\frac{1}{2}AB$,又OD$\underset{∥}{=}$$\frac{1}{2}$AB,∴EF$\underset{∥}{=}$OD,
∴四边形EFOD为平行四边形.
∴DE∥OF,又DE?平面BOC,OF?平面BOC,
∴DE∥平面BOC.…(5分)
解:(Ⅱ)∵O为CD中点,将△BOC沿OB边翻折,折成直二面角A-BO-C,E为AC中点,
∴BC=$\sqrt{2}$,由余弦定理BD2=AD2+AB2-2AD•AB•cos45°=2+4-2×$\sqrt{2}×2×\frac{\sqrt{2}}{2}$=2,∴BD=$\sqrt{2}$,
CD=$\sqrt{1+1}$=$\sqrt{2}$,∴△BCD为等边三角形.
设点A到平面BCD的距离为d,直线AC与平面BCD所成夹角为θ,
由(Ⅰ)知DE∥平面BOC,又OF⊥平面ABC,∴DE⊥平面ABC,
∵VA-BCD=VD-ABC
∴$\frac{1}{3}{S}_{△BCD}•d=\frac{1}{3}{S}_{△ABC}•DE$,
∴$\frac{1}{3}(\frac{1}{2}×\sqrt{2}×\sqrt{2}×\frac{\sqrt{3}}{2})•d=\frac{1}{3}(\frac{1}{2}×2×\sqrt{2})×\frac{\sqrt{2}}{2}$,
解得d=$\frac{2\sqrt{3}}{3}$,∴sin$θ=\frac{d}{AC}=\frac{\frac{2\sqrt{3}}{3}}{\sqrt{6}}$=$\frac{\sqrt{2}}{3}$,
即AC与平面BCD所成夹角的正弦值为$\frac{\sqrt{2}}{3}$.

点评 本题考查线面平行的证明,考查线面所成夹角的正弦值的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.已知z=x2+$\frac{1}{2}$y2+3,其中x,y满足关系式y2=4x,则z的最小值是3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.证明:$\frac{1}{2}$•$\frac{3}{4}$•$\frac{5}{6}$…$\frac{23}{24}$<$\frac{1}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.三棱锥P-ABC三条侧棱两两垂直,PA=a,PB=b,PC=c,三角形ABC的面积为S,则顶点P到底面的距离是(  )
A.$\frac{abc}{6s}$B.$\frac{abc}{3s}$C.$\frac{abc}{2s}$D.$\frac{abc}{s}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知四边形ABCD为圆O的内接正方形,且AB=2,EF为圆O的一条直径,M为正方形ABCD边界上一动点,∠EMF=α,α满足sin2α+cos2α=$\frac{1}{4}$,α∈($\frac{π}{2}$,π).
(1)求α的大小;
(2)求△MEF的周长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知在60°二面角M-α-N内有一点P,P到平面M、平面N的距离均为2,求点P到直线a的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,在棱长为2的正方体ABCD-A1B1C1D1中,E,F分别为DD1,DB的中点.
(1)求证:EF∥平面ABC1D1
(2)求B1E与平面AEC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图所示,正三棱柱ABC-A1B1C1的底面边长与侧棱长均为2,D为AC中点.
(1)求证:B1C∥平面A1DB;
(2)求直线BD与平面A1BC1所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若一个四棱锥底面为正方形,顶点在底面的射影为正方形的中心,且该四棱锥的体积为9,当其外接球表面积最小时,它的高为(  )
A.3B.2$\sqrt{2}$C.2$\sqrt{3}$D.3$\sqrt{3}$

查看答案和解析>>

同步练习册答案