精英家教网 > 高中数学 > 题目详情
9.已知f(x)=cos2ωx-$\sqrt{3}$sin2ωx,f(x)的最小正周期是π.
(1)求f(x)在[-$\frac{π}{2}$,$\frac{π}{2}$]上的单调递增区间;
(2)若x∈[0,$\frac{π}{2}$]时,f(x)+m≤3,求实数m的取值范围.

分析 (1)由三角函数公式化简可得f(x)=2cos(2ωx+$\frac{π}{3}$),由周期可得ω=1,可得f(x)=2cos(2x+$\frac{π}{3}$),解2kπ+π≤2x+$\frac{π}{3}$≤2kπ+2π结合x∈[-$\frac{π}{2}$,$\frac{π}{2}$]可得;
(2)可得x∈[0,$\frac{π}{2}$]时,cos(2x+$\frac{π}{3}$)∈[-1,$\frac{1}{2}$],由已知不等式和恒成立可得.

解答 解:(1)由三角函数公式化简可得:
f(x)=cos2ωx-$\sqrt{3}$sin2ωx=2cos(2ωx+$\frac{π}{3}$),
由f(x)的最小正周期是π可得$\frac{2π}{2ω}$=π,解得ω=1,
∴f(x)=2cos(2x+$\frac{π}{3}$),
由2kπ+π≤2x+$\frac{π}{3}$≤2kπ+2π可得kπ+$\frac{π}{3}$≤x≤kπ+$\frac{5π}{6}$,
∴f(x)的单调递增区间为[kπ+$\frac{π}{3}$,kπ+$\frac{5π}{6}$](k∈Z),
故f(x)在[-$\frac{π}{2}$,$\frac{π}{2}$]上的单调递增区间为[$\frac{π}{3}$,$\frac{π}{2}$];
(2)当x∈[0,$\frac{π}{2}$]时,2x+$\frac{π}{3}$∈[$\frac{π}{3}$,$\frac{4π}{3}$],
∴cos(2x+$\frac{π}{3}$)∈[-1,$\frac{1}{2}$],
f(x)+m≤3等价于m-3≥f(x),
故m-3≥$\frac{1}{2}$,解得m≥$\frac{7}{2}$.

点评 本题考查三角函数的最值,涉及三角函数的单调性和值域以及恒成立问题,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.设一直棱柱的底面是边长为2$\sqrt{2}$正方形,棱柱的顶点都在同一个球面上,且这个球面的表面积为64π,则该四棱柱的对角线与底面成的角是(  )
A.30°B.38°C.45°D.60°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.当a>0,0≤x≤1时,讨论函数y=f(x)=-x2+2ax的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知抛物线C:y2=2px(p>0)的顶点关于直线l:y=$\frac{1}{2}$x+$\frac{5}{4}$的对称点在抛物线C的准线l1上.
(1)求抛物线C的方程;
(2)设直线l2:3x-4y+7=0,在抛物线C求一点P,使得P到直线l1和l2的距离之和最小,并求最小距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知两个异面直线的方向向量分别为$\overrightarrow{a}$,$\overrightarrow{b}$,且|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=1,$\overrightarrow{a}$•$\overrightarrow{b}$=-$\frac{1}{2}$,则两直线的夹角为$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知点M(-5,0),N(0,5),P为椭圆$\frac{{x}^{2}}{6}$+$\frac{{y}^{2}}{3}$=1上一动点,则S△MNP的最小值为5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.过A(3,5)且与圆C:x2+y2-4x-4y+7=0相切的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.直线a与直线b无公共点,则(  )
A.a∥bB.a,b异面C.a∥b或a,b异面D.以上答案都不对

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设函数f(x)=$\left\{\begin{array}{l}{lnx,x>1}\\{{e}^{x},x≤1}\end{array}\right.$,则使得f(x)<1成立的x的取值范围是(-∞,0)∪(1,e).

查看答案和解析>>

同步练习册答案