精英家教网 > 高中数学 > 题目详情
8.设命题p:{x|x2-4ax+3a2<0}(a>0),命题q:{x|1<x-1≤2}
(1)如果a=1,且p∧q为真时,求实数x的取值范围;
(2)若¬p是¬q的充分不必要条件时,求实数a的取值范围.

分析 (1)当a=1时,P:{x|1<x<3},而q:{x|2<x≤3},由此利用p∧q为真,能求出实数x的取值范围.
(2)若?p是?q的充分不必要条件,表明q是p的充分不必要条件,由此能求出实数a的取值范围.

解答 (本题满分12分)
解:(1)当a>0时,{x|x2-4ax+3a2<0}
={x|(x-3a)(x-a)<0}={x|a<x<3a},
如果a=1时,命题p:{x|x2-4x+3<0},即:P:{x|1<x<3},而q:{x|2<x≤3},
因为p∧q为真,所以有{x|1<x<3}∩{x|2<x≤3}={x|2<x<3}.
故实数x的取值范围是{x|2<x≤3}.
(2)若?p是?q的充分不必要条件,表明q是p的充分不必要条件.
由(1)知,{x|2<x≤3}是{x|a<x<3a}(a>0)的真子集,
由题意得a≤2且3<3a,解得{a|1<a≤2}.
故实数a的取值范围是{a|1<a≤2}.

点评 本题考查实数的取值范围的求法,是基础题,解题时要认真审题,注意充分不必要条件、必要不充分条件、充要条件及复合命题真假判断的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.如图所示,四棱锥P-ABCD的底面是边长为8的正方形,四条侧棱长均为2$\sqrt{17}$,点G,E,F,H分别是棱PB,AB,CD,PC上共面的四点,平面GEFH⊥平面ABCD,BC∥平面GEFH.
(Ⅰ)证明:GH∥EF;
(Ⅱ)若EB=2,求四棱锥D-GEFH的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.与直线4x-3y-2=0垂直且点(1,0)到它的距离为1的直线是3x+4y+2=0或3x+4y-8=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.2log510+log51.25=(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.随机抽取某中学甲、乙两班各10名同学,测量他们的身高(三位整数,单位:cm),获得数据的茎叶图如图.现从两班高于175cm的所有同学中任选两人,则至少有一人来自甲班的概率为$\frac{5}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知f(x)是定义在R上的偶函数,并满足f(x+2)=$\frac{1}{f(x)}$,当2≤x≤3,f(x)=x,则f(25.5)等于(  )
A.-5.5B.-2.5C.2.5D.5.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列函数中,在(0,+∞)上是减函数的是(  )
A.y=$\frac{1}{x}$B.y=x2+1C.y=2xD.y=x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.过点(1,$\sqrt{2}$)的直线l将圆(x-2)2+y2=4分成两段弧,当优弧所对的圆心角最大时,直线l的斜率k=$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知三个不等式:(1)x2-2x-3<0;(2)$\frac{x-2}{x-4}<0$;(3)x2-(a+$\frac{1}{a}$)x+1<0(a>0).若同时满足(1)(2)的x也满足(3).求a的取值范围.

查看答案和解析>>

同步练习册答案