精英家教网 > 高中数学 > 题目详情
(2013•长宁区一模)已知二次函数f(x)=ax2+|a-1|x+a.
(1)函数f(x)在(-∞,-1)上单调递增,求实数a的取值范围;
(2)关于x不等式
f(x)
x
≥2在x∈[1,2]上恒成立,求实数a的取值范围;
(3)函数g(x)=f(x)+
1-(a-1)x2
x
在(2,3)上是增函数,求实数a的取值范围.
分析:(1)分a>0,a<0两种情况求出二次函数f(x)的增区间,使(-∞,-1)为增区间的子集即可;
(2)
f(x)
x
≥2在x∈[1,2]上恒成立,等价于在[1,2]上
f(x)
x
的最小值大于等于2,利用导数即可求得其最小值;
(3)设2<x1<x2<3,则g(x1)<g(x2)恒成立,分离出参数a后转化为求函数最值即可解决;
解答:解:显然a≠0(1)若a>0,f(x)的增区间为-
|a-1|
2a
,+∞),而函数f(x)在(-∞,-1)上单调递增,不符合题意;
若a<0,则f(x)=ax2+(1-a)x+a,其增区间为(-∞,-
1-a
2a
).
又f(x)在(-∞,-1)上单调递增,所以有-
1-a
2a
≥-1,解得a
1
3

故a<0,所以实数a的取值范围为:a<0.
(2)
f(x)
x
≥2即ax+
a
x
+|a-1|≥2,令g(x)=ax+
a
x
+|a-1|,
f(x)
x
≥2在x∈[1,2]上恒成立,等价于gmin(x)≥2,
g′(x)=a-
a
x2
=
a(x+1)(x-1)
x2

①当a>0时,x∈[1,2],g′(x)≥0,g(x)在[1,2]上递增,
gmin(x)=g(1)=2a+|a-1|≥2,解得a≥1;
②当a<0时,g′(x)≤0,此时g(x)在[1,2]上递减,
gmin(x)=g(2)=2a+
a
2
+|a-1|=
3
2
a+1≥2,解得a
2
3
,(舍)
综上,实数a的取值范围为a≥1.
(3)g(x)=ax2+
1
x
+a在(2,3)上是增函数,
设2<x1<x2<3,则g(x1)<g(x2),
ax12+
1
x1
+a<ax22+
1
x2
+a,a(x1+x2)(x1-x2)<
x1-x2
x1x2

因为2<x1<x2<3,所以a>
1
x1x2(x1+x2)

1
x1x2(x1+x2)
∈(
1
54
1
16
),
所以a
1
16
点评:本题考查二次函数的单调性及函数恒成立问题,考查分类讨论思想,考查学生灵活运用所学知识分析解决问题的能力,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•长宁区一模)某工厂生产一种产品的原材料费为每件40元,若用x表示该厂生产这种产品的总件数,则电力与机器保养等费用为每件0.05x元,又该厂职工工资固定支出12500元.
(1)把每件产品的成本费P(x)(元)表示成产品件数x的函数,并求每件产品的最低成本费;
(2)如果该厂生产的这种产品的数量x不超过3000件,且产品能全部销售,根据市场调查:每件产品的销售价Q(x)与产品件数x有如下关系:Q(x)=170-0.05x,试问生产多少件产品,总利润最高?(总利润=总销售额-总的成本)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•长宁区一模)设f(x)为定义在R上的奇函数,当x≥0时,f(x)=2x+2x+b(b为常数),则f(-2)=
-1
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•长宁区一模)(2-
x
8 展开式中含x4项的系数为
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•长宁区一模)已知函数f(x)=
1+x
+
1-x

(1)求函数f(x)的定义域和值域;
(2)设F(x)=
a
x
•[f2(x)-2]+f(x)(a为实数),求F(x)在a<0时的最大值g(a);
(3)对(2)中g(a),若-m2+2tm+
2
≤g(a)对a<0所有的实数a及t∈[-1,1]恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•长宁区一模)“φ=
π
2
”是“函数y=sin(x+φ)为偶函数的”(  )

查看答案和解析>>

同步练习册答案