精英家教网 > 高中数学 > 题目详情
9粒种子分种在3个坑内,每坑3粒,每粒种子发芽的概率为0.5,若一个坑内至少有1粒种子发芽,则这个坑不需要补种.若一个坑里的种子都没发芽,则这个坑需要补种,假定每个坑至多补种一次,每补种1个坑需10元,用ξ表示补种费用,写出ξ的分布列并求ξ的数学期望.(精确到0.01)

解析:因为单坑内的3粒种子都不发芽的概率为(1-0.5)3=,所以单坑不需要补种的概率为1=.

3个坑都不需要补种的概率×()0×()3=0.670,

恰有1个坑需要补种的概率为×()1×()2=0.287,

恰有2个坑需要补种的概率为×()2×()1=0.041,

3个坑都需要补种的概率为×()3×()0=0.002.

补种费用ξ的分布列为

ξ

0

10

20

30

P

0.670

0.287

0.041

0.002

Eξ=0×0.670+10×0.287+20×0.041+30×0.002=3.75.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

20、9粒种子分种在3个坑内,每坑3粒,每粒种子发芽的概率为0.5,若一个坑内至少有1粒种子发芽,则这个坑不需要补种;若一个坑内的种子都没发芽,则这个坑需要补种.假定每个坑至多补种一次,每补种1个坑需10元,用ξ表示补种费用,写出ξ的分布列并求ξ的数学期望.(精确到0.01)

查看答案和解析>>

科目:高中数学 来源: 题型:

05年全国卷Ⅰ理)(12分)

9粒种子分种在3个坑内,每坑3粒,每粒种子发芽的概率为,若一个坑内至少有1粒种子发芽,则这个坑不需要补种,若一个坑内的种子都没发芽,则这个坑需要补种.假定每个坑至多补种一次,每补种1个坑需10元,用ξ表示补种费用,写出ξ的分布列并求ξ的数学期望.(精确到

查看答案和解析>>

科目:高中数学 来源: 题型:

9粒种子分种在3个坑内,每坑3粒,每粒种子发芽的概率为0.5,若一个坑内至少有1粒种子发芽,则这个坑不需要补种,若一个坑里的种子都没发芽,则这个坑需要补种,假定每个坑至多补种一次,每补种1个坑需10元,用ξ表示补种费用,写出ξ的分布列并求ξ的数学期望.(精确到0.01)

查看答案和解析>>

科目:高中数学 来源:2005年山西省高考数学试卷Ⅰ(理)(解析版) 题型:解答题

9粒种子分种在3个坑内,每坑3粒,每粒种子发芽的概率为0.5,若一个坑内至少有1粒种子发芽,则这个坑不需要补种;若一个坑内的种子都没发芽,则这个坑需要补种.假定每个坑至多补种一次,每补种1个坑需10元,用ξ表示补种费用,写出ξ的分布列并求ξ的数学期望.(精确到0.01)

查看答案和解析>>

同步练习册答案