精英家教网 > 高中数学 > 题目详情

【题目】已知函数,(其中)的图象关于点成中心对称,且与点相邻的一个最低点为,则对于下列判断:

①直线是函数图象的一条对称轴;

②点是函数的一个对称中心;

③函数的图象的所有交点的横坐标之和为

其中所有正确的判断是(

A.①②B.①③C.②③D.

【答案】C

【解析】

先根据图象关于点成中心对称,且与点相邻的一个最低点为,分别代入求解计算出的解析式,再根据三角函数的图像性质逐个判断即可.

因为的图象关于点成中心对称,且与点相邻的一个最低点为,故,故.所以.

.又图像最低点为,.

.,..

对①,当,不是正弦函数的对称轴.故①错误.

对②,,,故点是函数的一个对称中心,故②正确.

对③,因为,,所以函数有6个交点.设交的横坐标分别为,根据图像以及五点作图法的方法可知,当时解得为6个横坐标的对称轴.

.故③正确.

综上,②③正确.

故选:C

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在四棱柱中,平面,底面是边长为的正方形,交于点交于点,且.

(Ⅰ)证明:平面

(Ⅱ)求的长度;

(Ⅲ)求直线所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设有限数列,定义集合为数列的伴随集合.

(Ⅰ)已知有限数列和数列.分别写出的伴随集合;

(Ⅱ)已知有限等比数列,求的伴随集合中各元素之和

(Ⅲ)已知有限等差数列,判断是否能同时属于的伴随集合,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=alnx21在定义域(02)内有两个极值点.

1)求实数a的取值范围;

2)设x1x2fx)的两个极值点,求证:lnx1+lnx2+lna0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将字母放入的方表格,每个格子各放一个字母,则每一行的字母互不相同,每一列的字母也互不相同的概率为_______;若共有行字母相同,则得k分,则所得分数的数学期望为______;(注:横的为行,竖的为列;比如以下填法第二行的两个字母相同,第13行字母不同,该情况下

a

b

c

c

a

b

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正四棱锥的底面边长为分别为的中点.

1)当时,证明:平面平面

2)若平面与底面所成锐二面角为,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥中,底面ABCD是梯形,且AD的中点为E,则四棱锥外接球的表面积为________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大学就业部从该大学2018年毕业且已就业的大学本科生中随机抽取了100人进行了问卷调查,其中有一项是他们的薪酬,经调查统计,他们的月薪在3000元到10000元之间,根据统计数据得到如下频率分布直方图:

若月薪在区间的左侧,则认为该大学本科生属“就业不理想”的学生,学校将与本人联系,为其提供更好的指导意见.其中分别是样本平均数和样本标准差,计算得(同一组中的数据用该组区间的中点值作代表)

1)现该校2018届本科毕业生张静的月薪为3600元,判断张静是否属于“就业不理想”的学生?用样本估计总体,从该校2018届本科毕业生随机选取一人,属于“就业不理想”的概率?

2)为感谢同学们对调查的支持配合,该校利用分层抽样的方法从样本的前3组中抽出6人,每人赠送一份礼品,并从这6人中再抽取2人,每人赠送新款某手机1部,求获赠手机的2人中恰有1人月薪不超过5000元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若函数,试讨论的单调性;

2)若,求的取值范围.

查看答案和解析>>

同步练习册答案