精英家教网 > 高中数学 > 题目详情

【题目】在△ABC中,角ABC的对边分别为abc.已知a2+c2b2ac.

1)求cosBtan2B的值;

2)若b3A,求c的值.

【答案】1cosBtan2B22

【解析】

1)由已知利用余弦定理可得cosB,利用同角三角函数基本关系式可求sinB,利用二倍角公式可求sin2Bcos2B,进而根据同角三角函数基本关系式可求tan2B的值.

2)由已知利用两角和的正弦函数公式可求sinC的值,进而由正弦定理可得c的值.

1)∵a2+c2b2ac

∴由余弦定理可得:cosB

sinB

sin2B2sinBcosBcos2B2cos2B1

tan2B

2)∵sinCsin[π﹣(A+B]sinA+B)=sinB)=sinBcoscosBsin.

∴由正弦定理,可得c2.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】,给出以下四种排序:①MNT;②MTN;③NTM;④TNM.从中任选一个,补充在下面的问题中,解答相应的问题.

已知等比数列中的各项都为正数,,且__________依次成等差数列.

(Ⅰ)求的通项公式;

(Ⅱ)设数列的前n项和为,求满足的最小正整数n

注:若选择多种排序分别解答,按第一个解答计分.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知abc为正实数,且满足a+b+c1.证明:

1|a|+|b+c1|

2)(a3+b3+c3)(≥3.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】携号转网,也称作号码携带、移机不改号,即无需改变自己的手机号码,就能转换运营商,并享受其提供的各种服务.20191127日,工信部宣布携号转网在全国范围正式启动.某运营商为提质量保客户,从运营系统中选出300名客户,对业务水平和服务水平的评价进行统计,其中业务水平的满意率为,服务水平的满意率为,对业务水平和服务水平都满意的客户有180人.

(Ⅰ)完成下面列联表,并分析是否有的把握认为业务水平与服务水平有关;

对服务水平满意人数

对服务水平不满意人数

合计

对业务水平满意人数

对业务水平不满意人数

合计

(Ⅱ)为进一步提高服务质量,在选出的对服务水平不满意的客户中,抽取2名征求改进意见,用表示对业务水平不满意的人数,求的分布列与期望;

(Ⅲ)若用频率代替概率,假定在业务服务协议终止时,对业务水平和服务水平两项都满意的客户流失率为,只对其中一项不满意的客户流失率为,对两项都不满意的客户流失率为,从该运营系统中任选4名客户,则在业务服务协议终止时至少有2名客户流失的概率为多少?

附:

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为,且,数列是公差为0的等差数列,且满足的等比数列.

1)求数列的通项公式;

2)求

3)设数列的通项公式,求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在贯彻精准扶贫政策的过程中,某单位在某市定点帮扶甲、乙两村各户贫困户,工作组对这户村民的年收入、劳动能力、子女受教育等情况等进行调查,并把调查结果转换为贫困指标,再将指标分成五组,得到如下图所示的频率分布直方图.若规定,则认定该户为“绝对贫困户”,否则认定该户为“相对贫困户”,且当时,认定该户为“低收入户”,当时,认定该户为“亟待帮助户”.已知此次调查中甲村的“绝对贫困户”占甲村贫困户的

1)完成下列列联表,并判断是否有的把握认为“绝对贫困户”数与村落有关;

2)某干部决定在这两村贫困指标在内的贫困户中,利用分层抽样抽取户,现从这户中再随机选取户进行帮扶,求所选户中至少有一户是“亟待帮助户”的概率.

甲村

乙村

总计

绝对贫困户

相对贫困户

总计

附:,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2020312日,国务院新闻办公室发布会重点介绍了改革开放40年,特别是党的十八大以来我国脱贫攻坚、精准扶贫取得的显著成绩,这些成绩为全面脱贫初步建成小康社会奠定了坚实的基础.下图是统计局公布的2010年~2019年年底的贫困人口和贫困发生率统计表.则下面结论正确的是(

(年底贫困人口的线性回归方程为(其中年份-2019),贫困发生率的线性回归方程为(其中年份-2009)

A.2010年~2019年十年间脱贫人口逐年减少,贫困发生率逐年下降

B.2012~2019年连续八年每年减贫超过1000万,且2019年贫困发生率最低

C.2010年~2019年十年间超过1.65亿人脱贫,其中2015年贫困发生率低于6

D.根据图中趋势线可以预测,到2020年底我国将实现全面脱贫

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆,四点中恰有三个点在椭圆C上,左、右焦点分别为F1F2

1)求椭圆C的方程;

2)过左焦点F1且不平行坐标轴的直线l交椭圆于PQ两点,若PQ的中点为NO为原点,直线ON交直线x=﹣3于点M,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,直线的参数方程为为参数),以原点为极点, 轴正半轴为极轴建立极坐标系,曲线的方程为,定点,点是曲线上的动点, 的中点.

(1)求点的轨迹的直角坐标方程;

(2)已知直线轴的交点为,与曲线的交点为,若的中点为,求的长.

查看答案和解析>>

同步练习册答案