精英家教网 > 高中数学 > 题目详情

【题目】甲、乙、丙、丁四个物体同时从某一点出发向同一个方向运动,其路程 关于时间 的函数关系式分别为 ,有以下结论:
①当 时,甲走在最前面;
②当 时,乙走在最前面;
③当 时,丁走在最前面,当 时,丁走在最后面;
④丙不可能走在最前面,也不可能走在最后面;
⑤如果它们一直运动下去,最终走在最前面的是甲.
其中,正确结论的序号为(把正确结论的序号都填上,多填或少填均不得分).

【答案】③④⑤
【解析】路程 关于时间 的函数关系式是

它们相应的函数模型分别是指数型函数,二次函数,一次函数,和对数型函数模型.

时, ,∴命题①不正确;

时, ,∴命题②不正确;

对数型函数的变化是先快后慢,当 时,甲、乙、丙、丁四个物体重合,从而可知当 时,丁走在最前面,当 时,丁走在最后面,命题③正确;指数型函数变化是先慢后快,当运动的时间足够长时,最前面的物体一定是按照指数型函数运动的物体,即一定是甲物体,∴命题⑤正确.

结合对数型和指数型函数的图象变化情况,可知丙不可能走在最前面,也不可能走在最后面,命题④正确.

根据题意利用指数型函数,二次函数,一次函数,和对数型函数模型代入数值求出结果即可。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】函数 的图象,经过下列哪个平移变换,可以得到函数y=5sin2x的图象?( )
A.向右平移
B.向左平移
C.向右平移
D.向左平移

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: =1(a>0,b>0)经过点(﹣ ).且离心率为
(1)求椭圆C的方程;
(2)若过椭圆C的左焦点F作两条互相垂直的动弦AB与CD,记由A,B,C,D四点构成的四边形的面积为S,求S的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)是定义在[﹣3,0)∪(0,3]上的奇函数,当x∈(0,3]时,f(x)的图象如图所示,那么满足不等式f(x)≥2x﹣1 的x的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商人如果将进货单价为 元的商品按每件 元出售,则每天可销售 件,现在他采用提高售价,减少进货量的办法增加利润.已知这种商品每件销售价提高 元,销售量就要减少 件,如果使得每天所赚的利润最大,那么他应将每件的销售价定为( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】直三棱柱A1B1C1﹣ABC,∠BCA=90°,点D1 , F1分别是A1B1 , A1C1的中点,BC=CA=CC1 , 则BD1与AF1所成角的余弦值是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若a、b是方程2(lg x)2-lg x6+3=0的两个实根,求lg(ab)·(logab+logba)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在正方体ABCD﹣A1B1C1D1中,已知E为棱CC1上的动点.
(1)求证:A1E⊥BD;
(2)是否存在这样的E点,使得平面A1BD⊥平面EBD?若存在,请找出这样的E点;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市为了解各校《国学》课程的教学效果,组织全市各学校高二年级全体学生参加了国学知识水平测试,测试成绩从高到低依次分为A、B、C、D四个等级.随机调阅了甲、乙两所学校各60名学生的成绩,得到如下的分布图:

(Ⅰ)试确定图中 的值;
(Ⅱ)若将等级A、B、C、D依次按照 分、80分、60分、50分转换成分数,试分别估计两校学生国学成绩的均值;
(Ⅲ)从两校获得A等级的同学中按比例抽取5人参加集训,集训后由于成绩相当,决定从中随机选2人代表本市参加省级比赛,求两人来自同一学校的概率.

查看答案和解析>>

同步练习册答案