精英家教网 > 高中数学 > 题目详情
已知函数f(x)的图象与函数h(x)=x++2的图象关于点A(0,1)对称.
(1)求函数f(x)的解析式;
(2)若g(x)=f(x)+,g(x)在区间(0,2]上的值不小于6,求实数a的取值范围.
(1)f(x)=x+
(2)[7,+∞)
解:(1)设f(x)图象上任一点坐标为(x,y),∵点(x,y)关于点A(0,1)的对称点(-x,2-y)在h(x)的图象上,
∴2-y=-x++2,∴y=x+,即f(x)=x+.
(2)由题意g(x)=x+,且g(x)=x+≥6,x∈(0,2].
∵x∈(0,2],∴a+1≥x(6-x),
即a≥-x2+6x-1.令q(x)=-x2+6x-1,x∈(0,2],
q(x)=-x2+6x-1=-(x-3)2+8,∴x∈(0,2]时,
q(x)max=q(2)=7,
故a的取值范围为[7,+∞).
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知定义域为的函数同时满足以下三个条件:
(1) 对任意的,总有;(2);(3) 若,且,则有成立,则称为“友谊函数”,请解答下列各题:
(1)若已知为“友谊函数”,求的值;
(2)函数在区间上是否为“友谊函数”?并给出理由.
(3)已知为“友谊函数”,假定存在,使得, 求证:.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,制图工程师要用两个同中心的边长均为4的正方形合成一个八角形图形.由对称性,图中8个三角形都是全等的三角形,设

(1)试用表示的面积;
(2)求八角形所覆盖面积的最大值,并指出此时的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

经过长期观测得到:在交通繁忙的时段内,某公路段汽车的车流量(千辆/时)与汽车的平均速度(千米/时)之间的函数关系为).
(1)在该时段内,当汽车的平均速度为多少时,车流量最大?最大车流量为多少?
(2)若要求在该时段内车流量超过千辆/时,则汽车的平均速度应在什么范围内?

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

某城市对一种售价为每件160元的商品征收附加税,税率为R%(即每销售100元征税R元),若年销售量为(30-R)万件,要使附加税不少于128万元,则R的取值范围是(  )
A.[4,8]B.[6,10]C.[4%,8%]D.[6%,100%]

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

甲同学家到乙同学家的途中有一公园,甲从家到公园的距离与乙从家到公园的距离都是2 km,甲10时出发前往乙家.如图所示,表示甲从家出发到达乙家为止经过的路程y(km)与时间x(分)的关系.试写出y=f(x)的函数解析式.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设a>0,函数f(x)=x+,g(x)=x-ln x,若对任意的x1,x2∈[1,e],都有f(x1)≥g(x2)成立,则实数a的取值范围为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设函数f(x)满足f(x)=1+flog2x,则f(2)=________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是定义在上的函数,且对任意实数,都有,且,则的值是
A.2014B.2015C.2016D.2017

查看答案和解析>>

同步练习册答案