精英家教网 > 高中数学 > 题目详情

【题目】如图,在正三棱柱中,点 分别是棱 上的点,且

(Ⅰ)证明:平面平面

(Ⅱ)若,求二面角的余弦值.

【答案】(1)见解析(2)

【解析】试题分析】(1)先运用面面垂直的性质定理证明平面,再运用面面垂直的判定定理进行分析推证平面 平面;(2)建立空间直角坐标系,借助空间向量的坐标形式的运算及空间向量的数量积公式求两个半平面的法向量,再运用向量的数量积公式进行求解:

(Ⅰ)证明:取线段的中点,取线段的中点,连接 ,则

是平行四边形,故

,平面平面,平面平面

平面,而

平面

平面

∴平面 平面

(Ⅱ)以轴, 轴, 轴建立空间直角坐标系,则

设平面的一个法向量

则有

,则

设平面的一个法向量

则有

,则

设二面角的平面角

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了121日至125日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如下资料:

日 期

121

122

123

124

125

温差°C

10

11

13

12

8

发芽数(颗)

23

25

30

26

16

该农科所确定的研究方案是:先从这五组数据中选取2组,用剩下的3组数据求线性回归方程,再对被选取的2组数据进行检验.

1)求选取的2组数据恰好是不相邻2天数据的概率;

2)若选取的是121日与125日的两组数据,请根据122日至124日的数据,求出y关于x的线性回归方程

3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?

(注:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥P﹣ABCD中,侧面PCD⊥底面ABCD,PD⊥CD,E为PC中点,底面ABCD是直角梯形.AB∥CD,∠ADC=90°,AB=AD=PD=1,CD=2.
(Ⅰ)求证:BE∥平面APD;
(Ⅱ)求证:BC⊥平面PBD.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在梯形ABCD中,BC∥AD,AB⊥BC,AB=BC=1,PA=AD=2,PA⊥平面ABCD,E为PD中点.
(1)求证:CE∥平面PAB;
(2)求直线CE与平面PAD所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个简单几何体的主视图,左视图如图所示,则其俯视图不可能为( ) .

A.长方形
B.直角三角形
C.圆
D.椭圆

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】A.如图所示, 是园内两条弦的交点,过延长线上一点作圆的切线, 为切点,已知求证:

B.已知矩阵 , .求矩阵,使得

C.在平面直角坐标系中,直线的参数方程为 (为参数),以坐标原点为极点, 轴正半轴为极轴的极坐标系中,曲线的极坐标方程为,已知直线与曲线相交于两点,求线段的长.

D.已知都是正数,且,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: =1(a>b>0)的离心率为 ,且点 在该椭圆上
(1)求椭圆C的方程;
(2)过椭圆C的左焦点F1的直线l与椭圆相交于A,B两点,若△AOB的面积为 ,求圆心在原点O且与直线l相切的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱ABC﹣A1B1C1中,侧棱垂直于底面,AB⊥BC,AA1=AC=2,BC=1,E,F分别是A1C1 , BC的中点.
(1)求证:AB⊥C1F;
(2)求证:C1F∥平面ABE;
(3)求三棱锥E﹣ABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校从参加高三模拟考试的学生中随机抽取60名学生,按其数学成绩(均为整数)分成六组[90,100),[100,110),…,[140,150]后得到如下部分频率分布直方图,观察图中的信息,回答下列问题:
(Ⅰ)补全频率分布直方图;
(Ⅱ)估计本次考试的数学平均成绩(同一组中的数据用该组区间的中点值作代表);
(Ⅲ)用分层抽样的方法在分数段为[110,130)的学生成绩中抽取一个容量为6的样本,再从这6个样本中任取2人成绩,求至多有1人成绩在分数段[120,130)内的概率.

查看答案和解析>>

同步练习册答案