精英家教网 > 高中数学 > 题目详情
如图,P(-3,0),点A在y轴上,点Q在x轴的正半轴上,且·=0,在AQ的延长线上取一点M,使||=2||.

(1)当A点在y轴上移动时,求动点M的轨迹C的方程;

(2)已知k∈R,i=(0,1),j=(1,0),经过(-1,0)以ki+j为方向向量的直线l与轨迹C交于E、F两点,又点D(1,0),若∠EDF为钝角时,求k的取值范围.

解:(1)设A(0,y0)、Q(x0,0)、M(x,y),

=(-3,-y0),=(x0,-y0).

·=0,∴-3x0+(-y0)(-y0)=0.

∴y02=3x0.                                                                ① 

又||=2||,

                                             ②

将②代入①,有y2=4x(x≠0).                                                      

(2)ki+j=k(0,1)+(1,0)=(1,k),

则l:y=k(x+1),与y2=4x联立,

得k2x2+(2k2-4)x+k2=0,

x1+x2=,x1x2=1.

当Δ>0时,k∈(-1,0)∪(0,1),                                                 ③ 

=(x1-1,y1),=(x2-1,y2),

若∠EDF为钝角,则·<0.                                               

·=(x1-1)(x2-1)+y1y2=x1x2-(x1+x2)+k(x1+1)k(x2+1)+1

=(k2+1)x1x2+(k2-1)(x1+x2)+k2+1<0,                                          ④ 

将③代入④整理有4k2-2<0.

<k<.

由题知k≠0,

∴满足题意k∈(,0)∪(0,).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:044

如图8-3所示,直线y=kx+b被抛物线y2=2px(p0)所截得的弦AB的长是多少?

8-3

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分14分)如图9-3,已知:射线OA为y=kx(k>0,x>0),射线OB为y= -kx(x>0),动点P(xy)在∠AOx的内部,PM⊥OA于M,PN⊥OB于N,四边形ONPM的面积恰为k.

   (1)当k为定值时,动点P的纵坐标y是横坐标x的函数,求这个函数y=f(x)的解析式;

   (2)根据k的取值范围,确定y=f(x)的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图2-3-11所示,已知点A(4,0),B(4,4),C(2,6),求AC和BD交点P的坐标.

图2-3-11

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,P(-3,0),点A在y轴上,点Q在x轴的正半轴上,且·=0,在AQ的延长线上取一点M,使||=2||.

(1)当A点在y轴上移动时,求动点M的轨迹C的方程;

(2)已知k∈R,i=(0,1),j=(1,0),经过(-1,0)以ki+j为方向向量的直线l与轨迹C交于E、F两点,又点D(1,0),若∠EDF为钝角时,求k的取值范围.

查看答案和解析>>

同步练习册答案