精英家教网 > 高中数学 > 题目详情

【题目】已知正四面体的棱长为为棱的中点,过作其外接球的截面,则截面面积的最小值为__________

【答案】

【解析】将四面体放置于正方体中,可得正方体的外接球就是四面体的外接球,∵正四面体的棱长为,∴正方体的棱长为,可得外接球半径满足,解得 为棱的中点,过作其外接球的截面,当截面到球心的距离最大时,截面圆的面积达最小值,此时球心到截面的距离等于正方体棱长的一半,可得截面圆的半径为,得到截面圆的面积最小值为

点睛:空间几何体与球接、切问题的求解方法

(1)求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.

(2)若球面上四点构成的三条线段两两互相垂直,且,一般把有关元素“补形”成为一个球内接长方体,利用求解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某市每年中考都要举行实验操作考试和体能测试,初三(1)班共有30名学生,如图表格为该班学生的这两项成绩,表中实验操作考试和体能测试都为优秀的学生人数为6人.由于部分数据丢失,只知道从这班30人中随机抽取一个,实验操作成绩合格,且体能测试成绩合格或合格以上的概率是

实验操作

不合格

合格

良好

优秀

体能测试

不合格

0

1

1

1

合格

0

2

1

良好

1

2

4

优秀

1

1

3

6

(Ⅰ)试确定 的值;

(Ⅱ)从30人中任意抽取3人,设实验操作考试和体能测试成绩都是良好或优秀的学生人数为,求随机变量的分布列及数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数).

(Ⅰ)若,求曲线处的切线方程;

(Ⅱ)若对任意 恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义域为R的函数f(x)= 是奇函数,
(1)求实数a的值;
(2)若对任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,求实数k的取值范围;
(3)设关于x的方程f(4x﹣b)+f(﹣2x+1)=0有实数根,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,过的左焦点的直线,直线被圆截得的弦长为.

(Ⅰ)求椭圆的方程;

(Ⅱ)设的右焦点为,在圆上是否存在点,满足,若存在,指出有几个这样的点(不必求出点的坐标);若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C ,点P,过右焦点F作与y轴不垂直的直线l交椭圆CAB两点.

(Ⅰ )求椭圆C的离心率;

(Ⅱ )求证:以坐标原点O为圆心与PA相切的圆,必与直线PB相切.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图:在四棱锥P﹣ABCD中,底面ABCD是菱形,∠BAD=60°,AB=2,PA=3,PA⊥底面ABCD,EPC中点,FAB中点.

(Ⅰ)求证:BE∥平面PDF;

(Ⅱ)求直线PD与平面PFB所成角的正切值;

(Ⅲ)求三棱锥P﹣DEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2﹣4x+a+3,a∈R.
(1)若函数y=f(x)的图象与x轴无交点,求a的取值范围;
(2)若函数y=f(x)在[﹣1,1]上存在零点,求a的取值范围;
(3)设函数g(x)=bx+5﹣2b,b∈R.当a=0时,若对任意的x1∈[1,4],总存在x2∈[1,4],使得f(x1)=g(x2),求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】轮船从某港口将一些物品送到正航行的轮船上,在轮船出发时,轮船位于港口北偏西且与相距20海里的处,并正以30海里的航速沿正东方向匀速行驶,假设轮船沿直线方向以海里/小时的航速匀速行驶,经过小时与轮船相遇.

(1)若使相遇时轮船航距最短,则轮船的航行速度大小应为多少?

(2)假设轮船的最高航速只能达到30海里/小时,则轮船以多大速度及什么航行方向才能在最短时间与轮船相遇,并说明理由.

查看答案和解析>>

同步练习册答案