精英家教网 > 高中数学 > 题目详情
函数f(x)=-3loga(x-2)+2(a>0且a≠1)的图象经过点A,若点A在直线mx+ny-4=0上,其中mn>0,则
2
m
+
3
n
的最小值为
6
6
分析:先利用对数函数的性质求出定点A的坐标,然后得到一个恒等式,然后利用1的代换,利用基本不等式求式子的最小值.
解答:解:因为函数f(x)=-3loga(x-2)+2(a>0且a≠1)的图象经过点A,
所以当x=3时,f(3)=2,即A(3,2).
又点A在直线mx+ny-4=0,所以3m+2n=4,即
3m
4
+
n
2
=1

所以
2
m
+
3
n
=(
2
m
+
3
n
(
3m
4
+
n
2
)
=
3
2
+
3
2
+(
9m
4n
+
n
m
)≥3+2
9m
4n
?
n
m
=3+2×
3
2
=6

当且仅当
9m
4n
=
n
m
,即4n2=9m2时取等号,所以
2
m
+
3
n
的最小值是6.
故答案为:6.
点评:本题主要考查利用基本不等式求式子的最值问题,要注意1的整体代换.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=3x2+1,g(x)=2x,数列{an}满足对于一切n∈N*有an>0,且f(an+1)-f(an)=g(an+1+
3
2
)
.数列{bn}满足bn=logana,设k,l∈N*bk=
1
1+3l
bl=
1
1+3k

(1)求证:数列{an}为等比数列,并指出公比;
(2)若k+l=9,求数列{bn}的通项公式.
(3)若k+l=M0(M0为常数),求数列{an}从第几项起,后面的项都满足an>1.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x(x2+3)
3x2+1
,数列{an}满足对于一切n∈N*有an>1,且an+1=f(an).数列{bn}满足,bn=
1
loga(ln
an-1
an+1
)
(a>0且a≠1)设k,l∈N*bk=
1
1+3l
bl=
1
1+3k

(Ⅰ)求证:数列{ln
an-1
an+1
}
为等比数列,并指出公比;
(Ⅱ)若k+l=5,求数列{bn}的通项公式;
(Ⅲ)若k+l=M0(M0为常数),求数列{abn}从第几项起,后面的项都满足abn>1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=3x2+1,g(x)=2x,数列{an}满足对于一切n∈N*有an>0,且f(an+1)-f(an)=g(an+1+
3
2
)
.数列{bn}满足bn=logana,设k,l∈N*bk=
1
1+3l
bl=
1
1+3k

(1)求证:数列{an}为等比数列,并指出公比;
(2)若k+l=9,求数列{bn}的通项公式.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=3x2+1,g(x)=2x,数列{an}满足对于一切n∈N*有an>0,且f(an+1)-f(an)=g(an+1+
3
2
)
.数列{bn}满足bn=logana,设k,l∈N*bk=
1
1+3l
bl=
1
1+3k

(1)求证:数列{an}为等比数列,并指出公比;
(2)若k+l=9,求数列{bn}的通项公式.
(3)若k+l=M0(M0为常数),求数列{an}从第几项起,后面的项都满足an>1.

查看答案和解析>>

同步练习册答案