精英家教网 > 高中数学 > 题目详情
11.已知全集U=R,集合A={x|x2-x-6≤0},$B=\left\{{\left.x\right|\frac{4-x}{x+1}≤0}\right\}$,那么集合A∩(∁UB)=(  )
A.[-2,4)B.(-1,3]C.[-2,-1]D.[-1,3]

分析 解不等式求出集合A、B,根据补集与交集的定义写出A∩(∁UB).

解答 解:全集U=R,集合A={x|x2-x-6≤0}={x|-2≤x≤3},
$B=\left\{{\left.x\right|\frac{4-x}{x+1}≤0}\right\}$={x|x<-1或x≥4},
∴∁UB={x|-1≤x<4},
∴A∩(∁UB)={x|-1≤x≤3}=[-1,3].
故选:D.

点评 本题考查了集合的运算与解不等式的应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知集合A={x|x2-2x-3<0},$B=\{\;x|\frac{1}{x}<1\;\}$,则A∩B=(  )
A.{x|1<x<3}B.{x|-1<x<3}C.{x|-1<x<0或0<x<3}D.{x|-1<x<0或1<x<3}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设向量$\overrightarrow{a}$=(sinx,cosx),$\overrightarrow{b}$=(sinx,$\sqrt{3}$sinx),x∈R,函数f(x)=$\overrightarrow{a}$•($\overrightarrow{a}$+2$\overrightarrow{b}$).
(1)求函数f(x)的最大值与单调递增区间;
(2)求使不等式f(x)≥2成立的x的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.数列{an}的前n项和为Sn,已知${a_1}=\frac{1}{2},{S_n}={n^2}{a_n}-n({n-1}),n=1,2,…$
(1)写出Sn与Sn-1的递推关系式(n≥2),并求出S2,S3的值;
(2)求Sn关于n的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设点$A(-2,\sqrt{3})$,B(2,0),点M在椭圆$\frac{x^2}{16}+\frac{y^2}{12}=1$上运动,当|MA|+|MB|最大时,点M的坐标为8+$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.各项均为正数的等差数列{an}中,$3{a_6}-{a_7}^2+3{a_8}=0$,则a7=(  )
A.2B.4C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)=x2-2x+2与函数$g(x)=-{x^2}+ax+b-\frac{1}{2}$的一个交点为P,以P为切点分别作函数f(x),g(x)的切线l1,l2,若l1⊥l2,则ab的最大值为$\frac{9}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.新学年伊始,附中社团开始招新.某高一新生对“大观天文社”、“理科学社”、“水墨霓裳社”很感兴趣.假设他能被这三个社团接受的概率分别为$\frac{3}{4}$,$\frac{1}{2}$,$\frac{1}{3}$.
(1)求此新生被两个社团接受的概率;
(2)设此新生最终参加的社团数为ξ,求ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知等比数列{an}的前n项和为Sn,2an+2an+2+5Sn=5Sn+1,且a1=q>1,数列{bn}满足$\frac{{b}_{n}}{{a}_{n}}$=|sin$\frac{(n+1)π}{2}$|.,若数列{bn}的前m项和为340,则m的值为8或9.

查看答案和解析>>

同步练习册答案