精英家教网 > 高中数学 > 题目详情

【题目】[选修4-4:坐标系与参数方程]
在直角坐标系xOy中,直线l1的参数方程为 ,(t为参数),直线l2的参数方程为 ,(m为参数).设l1与l2的交点为P,当k变化时,P的轨迹为曲线C.(10分)
(1)写出C的普通方程;
(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,设l3:ρ(cosθ+sinθ)﹣ =0,M为l3与C的交点,求M的极径.

【答案】
(1)

解:∵直线l1的参数方程为 ,(t为参数),

∴消掉参数t得:直线l1的普通方程为:y=k(x﹣2)①;

又直线l2的参数方程为 ,(m为参数),

同理可得,直线l2的普通方程为:x=﹣2+ky②;

联立①②,消去k得:x2﹣y2=4,即C的普通方程为x2﹣y2=4;


(2)

∵l3的极坐标方程为ρ(cosθ+sinθ)﹣ =0,

∴其普通方程为:x+y﹣ =0,

联立 得:

∴ρ2=x2+y2= + =5.

∴l3与C的交点M的极径为ρ=


【解析】解:(1.)分别消掉参数t与m可得直线l1与直线l2的普通方程为y=k(x﹣2)①与x=﹣2+ky②;联立①②,消去k可得C的普通方程为x2﹣y2=4;
(2.)将l3的极坐标方程为ρ(cosθ+sinθ)﹣ =0化为普通方程:x+y﹣ =0,再与曲线C的方程联立,可得 ,即可求得l3与C的交点M的极径为ρ=
【考点精析】根据题目的已知条件,利用极坐标系和直线的参数方程的相关知识可以得到问题的答案,需要掌握平面内取一个定点O,叫做极点;自极点O引一条射线OX叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系;经过点,倾斜角为的直线的参数方程可表示为为参数).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知当x<1时,f(x)=(2﹣a)x+1;当x≥1时,f(x)=ax(a>0且a≠1).若对任意x1≠x2 , 都有 成立,则a的取值范围是(
A.(1,2)
B.
C.
D.(0,1)∪(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:

最高气温

[10,15)

[15,20)

[20,25)

[25,30)

[30,35)

[35,40)

天数

2

16

36

25

7

4

以最高气温位于各区间的频率代替最高气温位于该区间的概率.
(Ⅰ)求六月份这种酸奶一天的需求量X(单位:瓶)的分布列;
(Ⅱ)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量n(单位:瓶)为多少时,Y的数学期望达到最大值?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列命题:

已知集合,则的充分不必要条件;

②“的必要不充分条件;

③“函数的最小正周期为的充要条件;

④“平面向量的夹角是钝角的要条件是.

其中正确命题的序号是 .(把所有正确命题的序号都写上)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面为平行四边形.底面 .

(I)证明:

(II)设,求棱锥的高.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:

最高气温

[10,15)

[15,20)

[20,25)

[25,30)

[30,35)

[35,40)

天数

2

16

36

25

7

4

以最高气温位于各区间的频率估计最高气温位于该区间的概率.(12分)
(1)求六月份这种酸奶一天的需求量不超过300瓶的概率;
(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】根据某水文观测点的历史统计数据,得到某河流水位X(单位:米)的频率分布直方图如图:将河流水位在以上6段的频率作为相应段的概率,并假设每年河流水位互不影响.
(1)求未来三年,至多有1年河流水位X∈[27,31)的概率(结果用分数表示);
(2)该河流对沿河A企业影响如下:当X∈[23,27)时,不会造成影响;当X∈[27,31)时,损失10000元;当X∈[31,35)时,损失60000元,为减少损失,现有种应对方案: 方案一:防御35米的最高水位,需要工程费用3800元;
方案二:防御不超过31米的水位,需要工程费用2000元;
方案三:不采取措施;
试比较哪种方案较好,并请说理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,曲线在点处的切线方程为.

1)求的解析式;

(2)证明:曲线上任一点处的切线与直线和直线所围成的三角形面积为定值,并求此定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和Sn=﹣ n2+kn(其中k∈N+),且Sn的最大值为8.
(1)确定常数k,求an
(2)求数列 的前n项和Tn

查看答案和解析>>

同步练习册答案