精英家教网 > 高中数学 > 题目详情
10.定义在R上的函数f(x),对任意x1,x2∈R(x1≠x2),有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0,则(  )
A.f(3)<f(1)<f(2)B.f(1)<f(2)<f(3)C.f(2)<f(1)<f(3)D.f(3)<f(2)<f(1)

分析 由条件得出函数f(x)在R上单调递减,由此得出结论.

解答 解:由定义在R上的函数f(x),对任意x1,x2∈R(x1≠x2),有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0,
可得函数f(x)在R上单调递减.
故有f(3)<f(2)<f(1),
故选:D.

点评 本题主要考查函数的单调性的性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.若关于x的不等式ex-ax-b≥0对任意实数x恒成立,则ab的最大值为(  )
A.$\sqrt{e}$B.e2C.eD.$\frac{e}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,边长为2的正方形ABCD绕AB边所在直线旋转一定的角度(小于180°)到ABEF的位置.
(1)若∠CBE=120°,求三棱锥B-ADF的外接球的表面积;
(2)若K为线段BE上异于B,E的点,CE=2$\sqrt{2}$.设直线AK与平面BDF所成角为φ,当30°≤φ≤45°时,求BK的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数$f(x)=\left\{\begin{array}{l}{(\frac{1}{2})^x},x≥3\\ f(x+1),x<3\end{array}\right.$,则$f(1-{log_{\frac{1}{2}}}3)$=$\frac{1}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知集合A={x|-4<x≤7},B={x|-5≤x<6},N={x|a-4<x<a+8},全集U=R.
(Ⅰ)求A∩B,A∪B
(Ⅱ)若(CUB)∪N=R,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.曲线y=xlnx在点(1,0)处的切线方程是(  )
A.y=x-1B.y=x+1C.y=2x-2D.y=2x+2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在等比数列{an}中,a1=3,a3=12,则a5=(  )
A.48B.-48C.±48D.36

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若a=20.1,b=0.12,c=log20.1,则(  )
A.a>b>cB.b>a>cC.c>a>bD.b>c>a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设数列{an}为单调递增的等差数列,a1=1,且a3,a6,a12依次成等比数列.
(1)求an
(2)若bn=$\frac{{2}^{a}n}{{{(2}^{a}n)}^{2}+3{•2}^{a}n+3}$,设数列{bn}的前n项和Tn,求证:Tn<$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案