【题目】设袋子中装有a个红球,b个黄球,c个蓝球,且规定:取出一个红球得1分,取出一个黄球2分,取出蓝球得3分.
(1)当a=3,b=2,c=1时,从该袋子中任取(有放回,且每球取到的机会均等)2个球,记随机变量ξ为取出此2球所得分数之和.求ξ分布列;
(2)从该袋子中任取(且每球取到的机会均等)1个球,记随机变量η为取出此球所得分数.若 ,求a:b:c.
【答案】
(1)解:由题意得ξ=2,3,4,5,6,
P(ξ=2)= = ;P(ξ=3)= = ;P(ξ=4)= = ;
P(ξ=5)= = ;P(ξ=6)= = .
故所求ξ的分布列为
ξ | 2 | 3 | 4 | 5 | 6 |
P |
(2)解:由题意知η的分布列为
η | 1 | 2 | 3 |
P |
Eη= =
Dη=(1﹣ )2 +(2﹣ )2 +(3﹣ )2 = .
得 ,
解得a=3c,b=2c,
故a:b:c=3:2:1.
【解析】(1)ξ的可能取值有:2,3,4,5,6,求出相应的概率可得所求ξ的分布列;(2)先列出η的分布列,再利用η的数学期望和方差公式,即可得到结论.
【考点精析】通过灵活运用离散型随机变量及其分布列,掌握在射击、产品检验等例子中,对于随机变量X可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.离散型随机变量的分布列:一般的,设离散型随机变量X可能取的值为x1,x2,.....,xi,......,xn,X取每一个值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,则称表为离散型随机变量X 的概率分布,简称分布列即可以解答此题.
科目:高中数学 来源: 题型:
【题目】已知数列是各项均为正数的等差数列,其中,且成等比数列;数列的前项和为,满足.
(1)求数列、的通项公式;
(2)如果,设数列的前项和为,是否存在正整数,使得成立,若存在,求出的最小值,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一个口袋中有个白球和个红球(,且),每次从袋中摸出两个球(每次摸球后把这两个球放回袋中),若摸出的两个球颜色相同为中奖,否则为不中奖.
(1)试用含的代数式表示一次摸球中奖的概率;
(2)若,求三次摸球恰有一次中奖的概率;
(3)记三次摸球恰有一次中奖的概率为,当为何值时,取最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线 ﹣ =1(a>0,b>0)的两条渐近线与抛物线y2=2px(p>0)的准线分别交于O、A、B三点,O为坐标原点.若双曲线的离心率为2,△AOB的面积为 ,则p=( )
A.1
B.
C.2
D.3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知二次函数f(x)=x2+bx+c有两个零点1和﹣1.
(1)求f(x)的解析式;
(2)设g(x),试判断函数g(x)在区间(﹣1,1)上的单调性并用定义证明;
(3)由(2)函数g(x)在区间(﹣1,1)上,若实数t满足g(t﹣1)﹣g(﹣t)>0,求t的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设常数a∈R,集合A={x|(x﹣1)(x﹣a)≥0},B={x|x≥a﹣1},若A∪B=R,则a的取值范围为( )
A.(﹣∞,2)
B.(﹣∞,2]
C.(2,+∞)
D.[2,+∞)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com